4,580 research outputs found

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally

    Optimal operation of a residential energy hub

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the performance of smart grids is optimized for the case of residential energy centers equipped with solar photo-voltaic (PV) units. In this regard, two optimizations were done reducing energy consumption and cost. The results obtained from this study can be used by three groups of external consumers, environmental experts and energy suppliers. Big home appliances consume large part of household energies. With the use of a smart control tool, consumers can program home appliances daily or weekly to pay less by using them in non-peak load time. Hub energy is a concept that has been considered in energy systems mixed with multiple energy carriers. A hub is determined as the locus of activity of system. Certainly, a hub is the energy core, in which all activities associated with a system including generation, storage and consumption of energy in applied equipment are determined. In this research, YALMIP toolbox in MATLAB is used for optimization of energy consumption with the objective of cost reduction associated to fossil fuels by using a PV generation unit. As a result, right time to turn each appliance on is specified considering the practical limitations of the appliances and the maximum possible application of PV unit for renewable energy generationPeer ReviewedPostprint (author's final draft

    Investigation of temporal mismatch of the energy consumption and local energy generation in the domestic environment

    Get PDF
    Conventional energy sources are not only finite and depleting rapidly, but are a major source of global warming because they are key contributors of greenhouse gases to the atmosphere. Renewable energy sources are one important approach to these challenges. Distributed micro-generation energy sources are expected to increase the diversity of energy sources for the grid, but also increase the flexibility and resilience of the grid. Furthermore, it could reduce the domestic energy demand from the grid by enabling local consumption of energy generated through renewable sources. The most widely installed renewable energy generation systems in domestic environments, in UK, are based on solar power. However, there is a common recurring issue related to output intermittency of most promising renewable energy generation methods (e.g. solar and wind), resulting in a temporal energy mismatch between local energy generation and energy consumption. Current state-of-the-art technologies/solutions for tackling temporal energy mismatch rely on various types of energy storage technologies, most of which are not suitable for the domestic environments because they are designed for industrial scale application and relatively costly. As such energy storage system technologies are generally not deemed as economically viable or attractive for domestic environments. This research project seeks to tackle the temporal energy mismatch problem between local PV generated energy and domestic energy consumption without the need for dedicated energy storage systems; without affecting the householders comfort and/or imposing operational burdens on the householders. Simulation has been chosen as the major vehicle to facilitate much of the research investigation although data collated from related research projects in the UK and Jordan have been used in the research study. Solar radiation models have been established for predicting the solar radiation for days with clear-sky for any location at any time of the year. This model has achieved a correlation factor of 0.99 in relating to the experimental data-set obtained from National Energy Research Centre Amman/Jordan. Such a model is an essential component for supporting this research study, which has been employed to predict the amount of solar power that could be obtained in different locations and different day(s) of the year. A Domestic Energy Ecosystem Model (DEEM) has been established, which is comprised of two sub-models, namely “PV panels” and “domestic energy consumption” models. This model can be configured with different parameters such as power generation capacity of the photovoltaic (PV) panels and the smart domestic appliances to model different domestic environments. The DEEM model is a vital tool for supporting the test, evaluation and validation of the proposed temporal energy mismatch control strategies. A novel temporal energy mismatch control strategy has been proposed to address these issues by bringing together the concepts of load shifting and energy buffering, with the support of smart domestic appliances. The ‘What-if’ analysis approach has been adopted to facilitate the study of ‘cause-effect’ under different scenarios with the proposed temporal energy mismatch control strategy. The simulation results show that the proposed temporal energy mismatch control strategy can successfully tackle the temporal energy mismatch problem for a 3 bedroom semi-detached house with 2.5kWp PV panels installed, which can utilise local generated energy by up to 99%, and reduce the energy demand from the grid by up to 50%. Further analysis using the simulation has indicated significant socio-economic impacts to the householders and the environment could be obtained from the proposed temporal energy mismatch control strategy. It shows the proposed temporal energy mismatch control strategy could significantly reduce the annual grid energy consumption for a 3 bedrooms semi-detached house and produce significant carbon reductions

    Dynamic Modeling and Optimal Design for Net Zero Energy Houses Including Hybrid Electric and Thermal Energy Storage

    Get PDF
    Net zero energy (NZE) houses purchase zero net metered electricity from the grid over a year. Technical challenges brought forth by NZE homes are related to the intermittent nature of solar generation, and are due to the fact that peak solar generation and load are not coincident. This leads to a large rate of change of load, and in case of high PV penetration communities, often requires the installation of gas power plants to service this variability. This article proposes a hybrid energy storage system including batteries and a variable power electric water heater which enables the NZE homes to behave like dispatchable generators or loads, thereby reducing the rate of change of the net power flow from the house. A co-simulation framework, INSPIRE+D, which enables the dynamic simulation of electricity usage in a community of NZE homes, and their connection to the grid is enabled. The calculated instantaneous electricity usage is validated through experimental data from a field demonstrator in southern Kentucky. It is demonstrated that when the operation of the proposed hybrid energy storage system is coordinated with solar PV generation, the required size and ratings of the battery would be substantially reduced while still maintaining the same functionality. Methodologies for sizing the battery and solar panels are developed

    Load Management in a Smart House

    Get PDF
    Since a couple years ago, studies have been done in order to minimize the energy consumption at home. With that in mind, algorithms were developed to predict the energy consumption at the house and study the behaviour of the loads with the goal of minimizing the energy costs. In this dissertation, the objective was to create a model for the space heating and water heating and study their behaviour and adjust their load model to reduce the energy consumption and energy bill, and find the best energy tariffs for each case.The models consider physical parameters of the house , so the model can be a better approximation from reality.However, the problem is not only, a Energy and bill reduction, but the algorithm has to focus on the comfort of the house habitants too.Since a couple years ago, studies have been done in order to minimize the energy consumption at home. With that in mind, algorithms were developed to predict the energy consumption at the house and study the behaviour of the loads with the goal of minimizing the energy costs. In this dissertation, the objective was to create a model for the space heating and water heating and study their behaviour and adjust their load model to reduce the energy consumption and energy bill, and find the best energy tariffs for each case.The models consider physical parameters of the house , so the model can be a better approximation from reality.However, the problem is not only, a Energy and bill reduction, but the algorithm has to focus on the comfort of the house habitants too

    Stochastic interval-based optimal offering model for residential energy management systems by household owners

    Get PDF
    This paper proposes an optimal bidding strategy for autonomous residential energy management systems. This strategy enables the system to manage its domestic energy production and consumption autonomously, and trade energy with the local market through a novel hybrid interval-stochastic optimization method. This work poses a residential energy management problem which consists of two stages: day-ahead and real-time. The uncertainty in electricity price and PV power generation is modeled by interval-based and stochastic scenarios in the day-ahead and real-time transactions between the smart home and local electricity market. Moreover, the implementation of a battery included to provide energy flexibility in the residential system. In this paper, the smart home acts as a price-taker agent in the local market, and it submits its optimal offering and bidding curves to the local market based on the uncertainties of the system. Finally, the performance of the proposed residential energy management system is evaluated according to the impacts of interval optimistic and flexibility coefficients, optimal bidding strategy, and uncertainty modeling. The evaluation has shown that the proposed optimal offering model is effective in making the home system robust and achieves optimal energy transaction. Thus, the results prove that the proposed optimal offering model for the domestic energy management system is more robust than its non-optimal offering model. Moreover, battery flexibility has a positive effect on the system’s total expected profit. With regarding to the bidding strategy, it is not able to impact the smart home’s behavior (as a consumer or producer) in the day-ahead local electricity market.This work is supported by the European Commission H2020 MSCA-RISE-2014: Marie Sklodowska-Curie project DREAM-GO Enabling Demand Response for short and real-time Efficient And Market Based Smart Grid Operation—An intelligent and real-time simulation approach Ref. 641794, and Grant Agreement No. 703689 (Project ADAPT). Moreover, Amin Shokri Gazafroudi acknowledge the support by the Ministry of Education of the Junta de Castilla y León and the European Social Fund through a grant from predoctoral recruitment of research personnel associated with the research project "Arquitectura multiagente para la gestión eficaz de redes de energía a través del uso de técnicas de intelligencia artificial" of the University of Salamanca. Moreover, authors would like to thank Dr. Juan Miguel Morales González from University of Malaga for his thoughtful suggestions.info:eu-repo/semantics/publishedVersio

    Computational Intelligence Approaches for Energy Optimization in Microgrids

    Get PDF
    The future electrical system termed as smart grid represents a significant paradigm shift for power industry. Nowadays, microgrids are becoming smarter with the integration of renewable energy resources (RESs) , diesel generators , energy storage systems (ESS), and plug-in electric vehicles (PEV or EV) . However, these integration bring with new challenges for intelligent management systems. The classical power generation approaches can no longer be applied to a microgrid with unpredictable renewable energy resources. To relive these problem, a proper power system optimization and a suitable coordination strategy are needed to balance the supply and demand. This thesis presents three projects to study the optimization and control for smart community and to investigate the strategic impact and the energy trading techniques for interconnected microgrids. The first goal of this thesis is to propose a new game-theoretic framework to study the optimization and decision making of multi-players in the distributed power system. The proposed game theoretic special concept-rational reaction set (RRS) is capable to model the game of the distributed energy providers and the large residential consumers. Meanwhile, the residential consumers are able to participate in the retail electricity market to control the market price. Case studies are conducted to validate the system framework using the proposed game theoretic method. The simulation results show the effectiveness and the accuracy of the proposed strategic framework for obtaining the optimum profits for players participating in this market. The second goal of the thesis is to study a distributed convex optimization framework for energy trading of interconnected microgrids to improve the reliability of system operation. In this work, a distributed energy trading approach for interconnected operation of islanded microgrids is studied. Specifically, the system includes several islanded microgrids that can trade energy in a given topology. A distributed iterative deep cut ellipsoid (DCE) algorithm is implemented with limited information exchange. This approach will address the scalability issue and also secure local information on cost functions. During the iterative process, the information exchange among interconnected microgrids is restricted to electricity prices and expected trading energy. Numerical results are presented in terms of the convergent rate of the algorithm for different topologies, and the performance of the DCE algorithm is compared with sub-gradient algorithm. The third goal of this thesis is to use proper optimization approaches to motivate the household consumers to either shift their loads from peaking periods or reduce their consumption. Genetic algorithm (GA) and dynamic programming (DP) based smart appliance scheduling schemes and time-of-use pricing are investigated for comparative studies with demand response

    Efficient Energy Optimization for Smart Grid and Smart Community

    Get PDF
    The electric power industry has undergone significant changes in response to the environmental concerns during the past decades. Nowadays, due to the integration of different distributed energy systems in the smart grid, the balancing between power generation and load demand becomes a critical problem. Specifically, due to the intermittent nature of renewable energy sources (RESs) , power system optimization becomes significantly complicated. Due to the uncertain nature of RESs, the system may fail to ensure the power quality which may cause increased operating costs for committing costly reserve units or penalty costs for curtailing load demands. This dissertation presents three projects to study the optimization and control for smart grid and smart community. First, optimal operation of battery energy storage system (BESS) in grid-connected microgrid is studied. Near optimal operation/allocation of the BESS is investigated with the consideration of battery lifetime characteristics. Approximate dynamic programming (ADP) is proposed to solve optimal control policy for time-dependent and finite-horizon BESS problems and performance comparison is done with classical dynamic programming approach. The results show that the ADP can optimize the system operation under different scenarios to maximize the total system revenue. Second, optimal operation of the BESS in islanded microgrid is also studied. Specifically, a new islanded microgrid model is formulated based on Markov decision process. A computationally efficient ADP approach is proposed to solve this energy optimization problem, and achieve near minimum operational cost efficiently. Simulation results show that the proposed ADP can achieve 100% and at least 98% of optimality for deterministic and stochastic case studies, respectively. The performance of the proposed ADP approach also achieved 18:69 times faster response than that of the traditional DP approach for 0:5 million of data samples. Third, a demand side management technique is proposed for the optimization of residential demands with financial incentives. A new design of comfort indicator is proposed considering both thermal and other electric appliances based on consumers’ comfort level. The proposed approach is compared with two existing demand response approaches for both 10-houses and 100-houses simulation studies. For both cases, the proposed approach outperformed the existing approaches in terms of reward incentives and comfort levels
    corecore