169 research outputs found

    On the longtime behavior of a viscous Cahn-Hilliard system with convection and dynamic boundary conditions

    Get PDF
    In this paper, we study the longtime asymptotic behavior of a phase separation process occurring in a three-dimensional domain containing a fluid flow of given velocity. This process is modeled by a viscous convective Cahn-Hilliard system, which consists of two nonlinearly coupled second-order partial differential equations for the unknown quantities, the chemical potential and an order parameter representing the scaled density of one of the phases. In contrast to other contributions, in which zero Neumann boundary conditions were are assumed for both the chemical potential and the order parameter, we consider the case of dynamic boundary conditions, which model the situation when another phase transition takes place on the boundary. The phase transition processes in the bulk and on the boundary are driven by free energies functionals that may be nondifferentiable and have derivatives only in the sense of (possibly set-valued) subdifferentials. For the resulting initial-boundary value system of Cahn-Hilliard type, general well-posedness results have been established in a recent contribution by the same authors. In the present paper, we investigate the asymptotic behavior of the solutions as times approaches infinity. More precisely, we study the ω\omega-limit (in a suitable topology) of every solution trajectory. Under the assumptions that the viscosity coefficients are strictly positive and that at least one of the underlying free energies is differentiable, we prove that the ω\omega-limit is meaningful and that all of its elements are solutions to the corresponding stationary system, where the component representing the chemical potential is a constant.Comment: Key words: Cahn-Hilliard systems, convection, dynamic boundary conditions, well-posedness, asymptotic behavior, omega-limit. arXiv admin note: text overlap with arXiv:1704.0533

    Optimal distributed control of a generalized fractional Cahn-Hilliard system

    Get PDF
    In the recent paper `Well-posedness and regularity for a generalized fractional Cahn-Hilliard system' (arXiv:1804.11290) by the same authors, general well-posedness results have been established for a a class of evolutionary systems of two equations having the structure of a viscous Cahn-Hilliard system, in which nonlinearities of double-well type occur. The operators appearing in the system equations are fractional versions in the spectral sense of general linear operators A,B having compact resolvents, which are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. In this work we complement the results given in arXiv:1804.11290 by studying a distributed control problem for this evolutionary system. The main difficulty in the analysis is to establish a rigorous Frechet differentiability result for the associated control-to-state mapping. This seems only to be possible if the state stays bounded, which, in turn, makes it necessary to postulate an additional global boundedness assumption. One typical situation, in which this assumption is satisfied, arises when B is the negative Laplacian with zero Dirichlet boundary conditions and the nonlinearity is smooth with polynomial growth of at most order four. Also a case with logarithmic nonlinearity can be handled. Under the global boundedness assumption, we establish existence and first-order necessary optimality conditions for the optimal control problem in terms of a variational inequality and the associated adjoint state system.Comment: Key words: fractional operators, Cahn-Hilliard systems, optimal control, necessary optimality condition

    Deep quench approximation and optimal control of general Cahn-Hilliard systems with fractional operators and double obstacle potentials

    Get PDF
    The paper arXiv:1804.11290 contains well-posedness and regularity results for a system of evolutionary operator equations having the structure of a Cahn-Hilliard system. The operators appearing in the system equations were fractional versions in the spectral sense of general linear operators A and B having compact resolvents and are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. The associated double-well potentials driving the phase separation process modeled by the Cahn-Hilliard system could be of a very general type that includes standard physically meaningful cases such as polynomial, logarithmic, and double obstacle nonlinearities. In the subsequent paper arXiv:1807.03218, an analysis of distributed optimal control problems was performed for such evolutionary systems, where only the differentiable case of certain polynomial and logarithmic double-well potentials could be admitted. Results concerning existence of optimizers and first-order necessary optimality conditions were derived. In the present paper, we complement these results by studying a distributed control problem for such evolutionary systems in the case of nondifferentiable nonlinearities of double obstacle type. For such nonlinearities, it is well known that the standard constraint qualifications cannot be applied to construct appropriate Lagrange multipliers. To overcome this difficulty, we follow here the so-called "deep quench" method. We first give a general convergence analysis of the deep quench approximation that includes an error estimate and then demonstrate that its use leads in the double obstacle case to appropriate first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint state system.Comment: Key words: Fractional operators, Cahn-Hilliard systems, optimal control, double obstacles, necessary optimality condition

    Optimal Distributed Control of a Cahn-Hilliard-Darcy System with Mass Sources

    Get PDF
    In this paper, we study an optimal control problem for a two-dimensional Cahn-Hilliard-Darcy system with mass sources that arises in the modeling of tumor growth. The aim is to monitor the tumor fraction in a finite time interval in such a way that both the tumor fraction, measured in terms of a tracking type cost functional, is kept under control and minimal harm is inflicted to the patient by administering the control, which could either be a drug or nutrition. We first prove that the optimal control problem admits a solution. Then we show that the control-to-state operator is Fr\'echet differentiable between suitable Banach spaces and derive the first-order necessary optimality conditions in terms of the adjoint variables and the usual variational inequality
    corecore