18 research outputs found

    Adaptive Algorithms Design for Active Noise Control Systems with Disturbance at Reference and Error Microphones

    Get PDF
    Active noise control (ANC) is a popular choice for mitigating the acoustic noise in the surrounding environment resulting from industrial and medical equipment, appliances, and consumer electronics. ANC cancels the low frequency acoustic noise by generating a cancelling sound from speakers. The speakers are triggered by noise control filters and produce sound waves with the same amplitude and inverted phase to the original sound. Noise control filters are updated by adaptive algorithms. Successful applications of this technology are available in headsets, earplugs, propeller aircraft, cars and mobile phones. Since multiple applications are running simultaneously, efficiency of the adaptive control algorithms in terms of implementation, computations and performance is critical to the performance of the ANC systems. The focus of the present project is on the development of efficient adaptive algorithms that perform optimally in different configurations of ANC systems suitable for real world applications.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202

    ANCシステムにおけるオンライン2次経路とフィードバック経路モデリングのための補助ノイズ電力スケジューリングに関する研究

    Get PDF
    The idea of cancelling the acoustic noise by generating an anti-noise signal is very fascinating, and was first proposed by P. Lueg in 1936. In feedforward active noise control (ANC) systems, the anti-noise signal is generated with the help of reference and error microphones, an adaptive filtered-x-LMS (FxLMS) algorithm based ANC filter, and an electro-acoustic path named as the secondary path. For stable operation of ANC systems, the FxLMS algorithm needs an estimate of the secondary path. The anti-noise signal generated by the loudspeaker (part of secondary path) causes interference with the reference microphone signal. This interference is due to the presence of electro-acoustic path, named as feedback path, between the loudspeaker and the reference microphone. It is required to neutralize the effect of this feedback path, and hence an estimate of the feedback path is required. For online modeling of the secondary and feedback paths, an additional auxiliary noise is injected. This auxiliary noise contributes to the residual error, and thus degrades the noise-reduction-performance (NRP) of ANC system. In order to improve the NRP, a gain scheduling strategy is used to vary the variance of the injected auxiliary noise. The purpose of the gain scheduling is that when the model estimates of the secondary and the feedback paths are far from the actual unknown paths, auxiliary noise with large variance is injected. Once the model estimates are closer to the actual unknown paths, the variance of auxiliary noise is reduced to a small value. In this way, on one hand the gain scheduling can help us to achieve the required model estimates of secondary and feedback paths, and on the other hand to improve the NRP at the steady-state. In this thesis, we discuss the two most important issues, i.e., 1) online secondary path modeling (OSPM), and 2) online feedback path modeling and neutralization (FBPMN) with gain scheduling. In chapter 1, the basic underlying physical principle and configurations of active noise control (ANC) systems are explained. The application of the basic building block of an ANC system i.e. An adaptive filter, in different system identification scenarios is discussed. The most popular adaptive algorithm for ANC system, i.e., FxLMS algorithm is derived for the general secondary path. A brief overview is given for the two fundamental issues in ANC systems, i.e., 1) OSPM and 2) online FBPMN. The use of optimal excitation signal, i.e., Perfect sweep signals for system identification is described. In chapter 2, the existing methods for OSPM without gain scheduling, where the auxiliary noise with fixed variance is used in all operating conditions, are discussed. In this chapter a simplified structure for OSPM with the modified FxLMS (MFxLMS) adaptive algorithm is proposed. The advantage of the simplified structure is that it reduces the computational complexity of the MFxLMS algorithm based OSPM without having any compromise on the performance of ANC system. In chapter 3, the existing methods for OSPM with gain scheduling are discussed. The drawbacks with the existing gain scheduling strategies are highlighted, and some new gain scheduling strategies are proposed to improve the modeling accuracy of SPM filter and the NRP of an ANC system. In existing methods, the gain is varied based on the power of residual error signal which carries information only about the convergence status of ANC system. In the Proposed methods the gain is varied based on the power of error signal of SPM filter. This is more desirable way of controlling the gain because the power of error signal of SPM filter carries information about the convergence status of both the ANC system and the SPM filter. The performance comparison is carried out through the simulation results. In chapter 4, the second most important issue associated with the feedforward configuration of ANC system, i.e., the issue of online FBPMN is deal with. In the first part, the existing methods for online FBPMN without gain scheduling are discussed. A new structure is proposed for online FBPMN without gain scheduling. The performance of the existing methods is compare with the proposed method through the simulation results. In the new structure the good features from the existing structures are combined together. The predictor is used in the new structure to remove the predictable interference term from the error signal of adaptive FBPMN filter. In addition to this, the action of FBPM filter and the FBPN filter is combined into a single FBPMN filter. The advantage of the new structure over the existing structures is that it can better neutralize the effect of feedback coupling on the input signal of ANC filter, thus improves the convergence of ANC system. In the second part, a gain scheduling strategy is proposed to improve the NRP of ANC system. In addition to this, a self-tuned ANP scheduling strategy with matching step-size for FBPMN filter is also proposed that requires no tuning parameters and further improves the NRP of ANC systems. In chapter 5, the concluding remarks and some future research directions are given.電気通信大学201

    Spatial Noise-Field Control With Online Secondary Path Modeling: A Wave-Domain Approach

    Get PDF
    Due to strong interchannel interference in multichannel active noise control (ANC), there are fundamental problems associated with the filter adaptation and online secondary path modeling remains a major challenge. This paper proposes a wave-domain adaptation algorithm for multichannel ANC with online secondary path modelling to cancel tonal noise over an extended region of two-dimensional plane in a reverberant room. The design is based on exploiting the diagonal-dominance property of the secondary path in the wave domain. The proposed wave-domain secondary path model is applicable to both concentric and nonconcentric circular loudspeakers and microphone array placement, and is also robust against array positioning errors. Normalized least mean squares-type algorithms are adopted for adaptive feedback control. Computational complexity is analyzed and compared with the conventional time-domain and frequency-domain multichannel ANCs. Through simulation-based verification in comparison with existing methods, the proposed algorithm demonstrates more efficient adaptation with low-level auxiliary noise.DP14010341

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Active control of outgoing noise fields in rooms

    Get PDF
    Active noise control is a strategy to suppress a noise by superimposing it with a carefully designed secondary noise. The strategy has been under research over the past half century with active noise control aided devices surging on the market over the last decade. However, up to now, the most successful applications of active noise control are still limited to the single channel systems, where noises propagate in ducts or in the human ear canals. Many researchers attempted to extend the application of active noise control to spatial noise fields, such as controlling the tire rolling noise in cars, the ventilation noise in workplaces, or the pump engine noise outdoors, which account for the majority of noises we encounter in our everyday lives. They developed spatial active noise control systems based on room modes, spherical modes, or the Helmholtz integral equation. The attempts have found limited success in the real world because of two problems. The first is that a spatial noise field is the complicated interaction of a number of noise sources with the environment, both of which can be non-stationary and time-varying. This problem makes it extremely difficult to obtain clean reference signals for spatial active noise control systems. The second is that due to the lack of a time-domain spatial sound field control theory, the existing spatial active noise control systems process the acoustic quantities in the time-frequency domain. The time-frequency domain processing introduces the frame delay and thus probably makes the systems violate the causal control constraint. This thesis proposes an outgoing noise field control system based on the frequency-domain sound field separation method. The method decouples the outgoing field (due to the noise sources) from the incoming field (due to the environment) on a sphere surrounding the noise sources. By canceling the outgoing field only, the proposed system reduces the noise entirely in a room without estimating the secondary paths in real-time and with negligible influence on the desired sound field in the room. This thesis further derives a time-domain sound field separation method, based on which a low latency outgoing field control system with random noise field cancellation capacity is developed. Multiple circular arrays of vector sensors for three-dimensional sound field analysis are developed based on the time-domain method. The designed arrays have a compact geometry, and thus can be integrated with small sized wearable devices and provide them with real-time sound field analysis capacity

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    Optimal variable step-size NLMS algorithms with auxiliary noise power scheduling for feedforward active noise control

    No full text
    The paper introduces two improvements in the feedforward active noise control system with online secondary path modeling developed by Akhtar, Abe, and Kawamata: 1) optimal variable step-size parameters are derived for the adaptation algorithms of the secondary path modeling filter and of the control filter and 2) a self-tuning power scheduling for the auxiliary noise is introduced. The proposed power scheduling is chosen so that in every operating condition a specific ratio between the powers at the error microphone of the auxiliary noise and of the residual noise is achieved. It is shown that for the same auxiliary noise conditions the adaptation algorithms equipped with the optimal variable step-size parameters improve the convergence speed of the system and the estimation accuracy of the secondary path and of the optimal control filter. It is also shown that, compared with a fixed power auxiliary noise, the power scheduling of the auxiliary noise is capable to better meet the conflicting requirements of fast convergence speed of the secondary path modeling filter and of low residual noise in steady state conditions

    Aktive Reduktion modulierter Zahneingriffsvibrationen von Planetengetrieben

    Get PDF
    Der Forschungsbeitrag ist motiviert durch die vermehrte Anwendung von Planetengetrieben in neuen Technologien wie Getriebefan-Triebwerken. Das Ziel der Arbeit besteht darin, die Luft- und Körperschallemissionen von Planetengetrieben mithilfe eines Systems zur aktiven Schwingungsreduktion (ASR) zu reduzieren. Dies ermöglicht einerseits Komfortsteigerungen für Menschen durch Lärmreduktion und andererseits den Schutz empfindlicher Bauteile vor schädigenden Vibrationen. Eine Literaturrecherche macht Herausforderungen in Bezug auf Modellbildung, Regelalgorithmen und Aktorik durch den hohen Frequenzbereich des Zahneingriffs deutlich. ASR-Produkte nach dem aktuellen Stand der Technik funktionieren nur für deutlich tiefere Frequenzen. Zur messtechnischen Charakterisierung des Anregungsverhaltens von Planetengetrieben in der Leistungsklasse bis 10kW erfolgt der Aufbau eines Prüfstands. Dieser erlaubt die Ermittlungvon technischen und psychoakustischen Anforderungen an das zu entwickelnde ASR-System. Vier ausgewählte modellfreie Regelalgorithmen werden zur Kompensation modulierter Vibrationen aus Planetengetrieben weiterentwickelt. Eine einheitliche Simulationsumgebung erlaubt die Gegenüberstellung der Algorithmen. Der schmalbandig wirkende Simultaneous-Equations-Algorithmus wird ausgewählt. Eine Methode zur Auslegung von piezoelektrischen Inertialmassenaktoren (IMA) wird vorgestellt und angewendet. Zur Realisierung des ASR-Systems werden verschiedene Konzepte vorgeschlagen und diskutiert. Ein Konzept mit vier IMA in tangentialer Anordnung am Getriebegehäuse wird ausgelegt, konstruiert und am Prüfstand als Aktormodul aufgebaut. In Prüfstandsversuchen wird der entwickelte modellfreie Regelalgorithmus validiert. Er erzielt vergleichbare Regelgüten wie der modellbasierte FxLMSAlgorithmus, bei gleichzeitig größerer Robustheit gegenüber Regelstreckenänderungen. Das entwickelte Aktormodul ermöglicht signifikante Reduktionen verschiedener Regelgrößen wie Schalldruck, Beschleunigung oder Kraft. In den meisten untersuchten Konfigurationen ergeben sich deutliche Reduktionen der Regelgrößen, während andere Schwingungsgrößen verschlechtert werden. Die akustische Abstrahlung einer mit dem Getriebe verbundenen Platte kann auf Restamplituden von 18% verringert werden. Durch eine Reduktion von Lautheit und Tonhaltigkeit wird das Getriebegeräusch angenehmer wahrgenommen. Eine Diskussion von Potentialen und Aufwänden des ASR-Systems schließt die Arbeit ab

    Estudo sobre o descasamento de frequência em sistemas de controle ativo de ruído para ruídos de banda estreita

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia ElétricaEsta dissertação discute um problema inerente aos sistemas de controle ativo de ruído (active noise control - ANC) de topologia feedforward que visam atenuar exclusivamente ruídos acústicos de banda estreita (ruídos tonais). Nesse tipo de sistema, sensores de referência não acústicos (tacômetros, sensores ópticos, dentre outros) são utilizados para medir a frequência fundamental do ruído primário. Tal medida é utilizada para sintetizar sinais de referência senoidais que são processados por controladores adaptativos, os quais são responsáveis pela geração de um sinal de antirruído. Esse sinal, através de um transdutor, é inserido no domínio acústico visando se obter o cancelamento do ruído primário. Para essa classe de sistema de ANC é observada uma forte degradação de desempenho quando os sinais de referência são gerados com frequências distintas daquelas que compõem o ruído primário. Tal problema, comumente denominado descasamento de frequência, é o objeto principal dos estudos deste trabalho de pesquisa. Nesse contexto, os principais sistemas de ANC robustos ao problema de descasamento de frequência, encontrados na literatura, são estudados, culminando na proposta de um novo sistema com baixa sensibilidade a tal descasamento. Resultados de simulação atestam que o sistema proposto apresenta muito bom desempenho, especialmente quando o ruído a ser cancelado é não estacionário e o seu componente fundamental é o de maior potência.This dissertation presents an inherent problem of narrowband feedforward active noise control (ANC) systems. In this class of systems, nonacoustic reference sensors (tachometers, optic sensors, among others) are used to measure the fundamental frequency of the primary noise. The obtained measurement is used to synthesize sinusoidal reference signals that are processed by adaptive controllers, which are responsible for generating the antinoise signal. The antinoise is inserted into the acoustic environment by using a transducer, aiming to cancel the primary noise. In this class of ANC systems, a strong performance degradation is observed when the reference signals are synthesized with different frequencies of those that compose the primary noise. This problem, usually called frequency mismatch, is the main topic of study in this research work. In this context, the main ANC systems robust to frequency mismatch from the literature are dicussed as well as a new system exhibiting low sensibility to the frequency mismatch is proposed. Simulation results attest very good performance of the proposed system, particularly in scenarios in which the primary noise is nonstationary and its fundamental component has larger power
    corecore