191,922 research outputs found

    Langley Atmospheric Information Retrieval System (LAIRS): System description and user's guide

    Get PDF
    This document presents the user's guide, system description, and mathematical specifications for the Langley Atmospheric Information Retrieval System (LAIRS). It also includes a description of an optimal procedure for operational use of LAIRS. The primary objective of the LAIRS Program is to make it possible to obtain accurate estimates of atmospheric pressure, density, temperature, and winds along Shuttle reentry trajectories for use in postflight data reduction

    On the equivalence between radiance and retrieval assimilation

    Get PDF
    The need for consistent assimilation of satellite measurements for numerical weather prediction led operational meteorological centers to assimilate satellite radiances directly using variational data assimilation systems. More recently there has been a renewed interest in assimilating satellite retrievals (e.g., to avoid the use of relatively complicated radiative transfer models as observation operators for data assimilation). The aim of this paper is to provide a rigorous and comprehensive discussion of the conditions for the equivalence between radiance and retrieval assimilation. It is shown that two requirements need to be satisfied for the equivalence: (i) the radiance observation operator needs to be approximately linear in a region of the state space centered at the retrieval and with a radius of the order of the retrieval error; and (ii) any prior information used to constrain the retrieval should not underrepresent the variability of the state, so as to retain the information content of the measurements. Both these requirements can be tested in practice. When these requirements are met, retrievals can be transformed so as to represent only the portion of the state that is well constrained by the original radiance measurements and can be assimilated in a consistent and optimal way, by means of an appropriate observation operator and a unit matrix as error covariance. Finally, specific cases when retrieval assimilation can be more advantageous (e.g., when the estimate sought by the operational assimilation system depends on the first guess) are discussed

    The Parallel Distributed Image Search Engine (ParaDISE)

    Get PDF
    Image retrieval is a complex task that differs according to the context and the user requirements in any specific field, for example in a medical environment. Search by text is often not possible or optimal and retrieval by the visual content does not always succeed in modelling high-level concepts that a user is looking for. Modern image retrieval techniques consists of multiple steps and aim to retrieve information from large–scale datasets and not only based on global image appearance but local features and if possible in a connection between visual features and text or semantics. This paper presents the Parallel Distributed Image Search Engine (ParaDISE), an image retrieval system that combines visual search with text–based retrieval and that is available as open source and free of charge. The main design concepts of ParaDISE are flexibility, expandability, scalability and interoperability. These concepts constitute the system, able to be used both in real–world applications and as an image retrieval research platform. Apart from the architecture and the implementation of the system, two use cases are described, an application of ParaDISE in retrieval of images from the medical literature and a visual feature evaluation for medical image retrieval. Future steps include the creation of an open source community that will contribute and expand this platform based on the existing parts

    Building economic models and measures of search

    Get PDF
    Economics provides an intuitive and natural way to formally represent the costs and benefits of interacting with applications, interfaces and devices. By using economic models it is possible to reason about interaction, make predictions about how changes to the system will affect behavior, and measure the performance of people's interactions with the system. In this tutorial, we first provide an overview of relevant economic theories, before showing how they can be applied to formulate different ranking principles to provide the optimal ranking to users. This is followed by a session showing how economics can be used to model how people interact with search systems, and how to use these models to generate hypotheses about user behavior. The third session focuses on how economics has been used to underpin the measurement of information retrieval systems and applications using the C/W/L framework (which reports the expected utility, expected total utility, expected total cost, and so on) - and how different models of user interaction lead to different metrics. We then show how information foraging theory can be used to measure the performance of an information retrieval system - connecting the theory of how people search with how we measure it. The final session of the day will be spent building economic models and measures of search. Here sample problems will be provided to challenge participants, or participants can bring their own

    Data Mining in an Electronic Poll (e-Poll) System

    Get PDF
    This paper introduces the Final Year Project entitled Data Mining in an Electronic Poll (e-Poll) System, with the problem being how the use of Data Mining in an Online Poll System can help managers to obtain statistics of customer feedback or opinions to help achieve their company objectives. The project's objectives are to conduct study on the use of Data Mining for an e-Poll system and how it affects the decision of system owners, to design a Data Mart for the Poll that will allow effortless management of the system's information, and lastly, to produce a working prototype of the system that allows capturing and retrieval of poll participation information from store members. The procedures identified to accomplish these tasks are by going through literature sources to better understand the proper tools and technique in the development of the system, by observing current online polling systems and online stores, and by creating a functional prototype of the e-Poll system to capture poll participation information in order for analysis to be performed unto them using Data Mining tools. Through the development of this system, the author finds that Data Mining offers managers to transform their raw data into useful data, save time in uncovering data trends and analyze vast amounts of data at a time. Proper design of the Data Mart using Dimensional Modeling or Star Schema allows optimal query performance and greater understandability without any loss of information. The e-Poll design allows correlation of the poll participant's feedback to their personal information, allowing proper analysis and a gateway for managers to gather potentially important information from all or a sample of their customers, regardless of geographical boundaries and/or time. Keywords: Data mimng, e-Poll system, online stores, Data Mart, segmentation, classification, analysis

    Fisher Linear Discriminant Analysis for Text-Image Combination in Multimedia Information Retrieval

    No full text
    International audienceWith multimedia information retrieval, combining different modalities - text, image, audio or video provides additional information and generally improves the overall system performance. For this purpose, the linear combination method is presented as simple, flexible and effective. However, it requires to choose the weight assigned to each modality. This issue is still an open problem and is addressed in this paper. Our approach, based on Fisher Linear Discriminant Analysis, aims to learn these weights for multimedia documents composed of text and images. Text and images are both represented with the classical bag-of-words model. Our method was tested over the ImageCLEF datasets 2008 and 2009. Results demonstrate that our combination approach not only outperforms the use of the single textual modality but provides a nearly optimal learning of the weights with an efficient computation. Moreover, it is pointed out that the method allows to combine more than two modalities without increasing the complexity and thus the computing tim

    Parametric optimal estimation retrieval of the non-precipitating parameters over the global oceans, A

    Get PDF
    2006 Summer.Includes bibliographical references (pages 82-87).Covers not scanned.Print version deaccessioned 2021.There are a multitude of spacebome microwave sensors in orbit, including the TRMM Microwave Imager (TMI), the Special Sensor Microwave/lmager (SSM/I) onboard the DMSP satellites, the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), SSMIS, WINDSAT, and others. Future missions, such as the planned Global Precipitation Measurement (GPM) Mission, will incorporate additional spacebome microwave sensors. The need for consistent geophysical parameter retrievals among an ever-increasing number of microwave sensors requires the development of a physical retrieval scheme independent of any particular sensor and flexible enough so that future microwave sensors can be added with relative ease. To this end, we attempt to develop a parametric retrieval algorithm currently applicable to the non-precipitating atmosphere with the goal of having consistent non-precipitating geophysical parameter products. An algorithm of this nature makes is easier to merge separate products, which, when combined, would allow for additional global sampling or longer time series of the retrieved global geophysical parameters for climate purposes. This algorithm is currently applied to TMI, SSM/I and AMSR-E with results that are comparable to other independent microwave retrievals of the non-precipitating parameters designed for specific sensors. The physical retrieval is developed within the optimal estimation framework. The development of the retrieval within this framework ensures that the simulated radiances corresponding to the retrieved geophysical parameters will always agree with observed radiances regardless of the sensor being used. Furthermore, a framework of this nature allows one to easily add additional physics to describe radiation propagation through raining scenes, thus allowing for the merger of cloud and precipitation retrievals, if so desired. Additionally, optimal estimation provides error estimates on the retrieval, a product often not available in other algorithms, information on potential forward model/sensor biases, and a number of useful diagnostics providing information on the validity and significance of the retrieval (such as Chi-Square, indicative of the general "fit" between the model and observations and the A-Matrix, indicating the sensitivity of the model to a change in the geophysical parameters). There is an expected global response of these diagnostics based on the scene being observed, such as in the case of a raining scene. Fortunately, since TRMM has a precipitation radar (TRMM PR) in addition to a radiometer (TMI) flying on-board, the expected response of the retrieval diagnostics to rainfall can be evaluated. It is shown that a potentially powerful rainfall screen can then be developed for use in passive microwave rainfall and cloud property retrieval algorithms with the possibility of discriminating between precipitating and nonprecipitating scenes, and further indicating the possible contamination of rainfall in cloud liquid water path microwave retrievals

    Performance comparison of clustered and replicated information retrieval systems

    Get PDF
    The amount of information available over the Internet is increasing daily as well as the importance and magnitude of Web search engines. Systems based on a single centralised index present several problems (such as lack of scalability), which lead to the use of distributed information retrieval systems to effectively search for and locate the required information. A distributed retrieval system can be clustered and/or replicated. In this paper, using simulations, we present a detailed performance analysis, both in terms of throughput and response time, of a clustered system compared to a replicated system. In addition, we consider the effect of changes in the query topics over time. We show that the performance obtained for a clustered system does not improve the performance obtained by the best replicated system. Indeed, the main advantage of a clustered system is the reduction of network traffic. However, the use of a switched network eliminates the bottleneck in the network, markedly improving the performance of the replicated systems. Moreover, we illustrate the negative performance effect of the changes over time in the query topics when a distributed clustered system is used. On the contrary, the performance of a distributed replicated system is query independent
    • …
    corecore