1,484 research outputs found

    A Survey of Pipelined Workflow Scheduling: Models and Algorithms

    Get PDF
    International audienceA large class of applications need to execute the same workflow on different data sets of identical size. Efficient execution of such applications necessitates intelligent distribution of the application components and tasks on a parallel machine, and the execution can be orchestrated by utilizing task-, data-, pipelined-, and/or replicated-parallelism. The scheduling problem that encompasses all of these techniques is called pipelined workflow scheduling, and it has been widely studied in the last decade. Multiple models and algorithms have flourished to tackle various programming paradigms, constraints, machine behaviors or optimization goals. This paper surveys the field by summing up and structuring known results and approaches

    High Performance Reconfigurable Computing for Linear Algebra: Design and Performance Analysis

    Get PDF
    Field Programmable Gate Arrays (FPGAs) enable powerful performance acceleration for scientific computations because of their intrinsic parallelism, pipeline ability, and flexible architecture. This dissertation explores the computational power of FPGAs for an important scientific application: linear algebra. First of all, optimized linear algebra subroutines are presented based on enhancements to both algorithms and hardware architectures. Compared to microprocessors, these routines achieve significant speedup. Second, computing with mixed-precision data on FPGAs is proposed for higher performance. Experimental analysis shows that mixed-precision algorithms on FPGAs can achieve the high performance of using lower-precision data while keeping higher-precision accuracy for finding solutions of linear equations. Third, an execution time model is built for reconfigurable computers (RC), which plays an important role in performance analysis and optimal resource utilization of FPGAs. The accuracy and efficiency of parallel computing performance models often depend on mean maximum computations. Despite significant prior work, there have been no sufficient mathematical tools for this important calculation. This work presents an Effective Mean Maximum Approximation method, which is more general, accurate, and efficient than previous methods. Together, these research results help address how to make linear algebra applications perform better on high performance reconfigurable computing architectures

    Communication reduction techniques in numerical methods and deep neural networks

    Get PDF
    Inter-node communication has turned out to be one of the determining factors of the performance on modern HPC systems. Furthermore, the situation only gets worse with the ever-incresing size of the cores involved. Hence, this thesis explore the various possible techniques to reduce the communication during the execution of a parallel program. It turned out that there is no one-size-fit-all approach to the challenge. Despite this, the problems in each field, due to their unique characteristics, dispose of distinct opportunities for the communication reduction. The thesis, first devles into numerical linear algebra, develops an evolution of the Pipelined CG called IFCG. It eliminates the synchronizations normally take place towards the end of each iteration to increase the parallelism. Secondly, the thesis draws its attention on reducing the necessity to transfer the parameters between the CPU host and GPUs during a neural network training. It develops two routines: ADT and AWP in order to compress and decompress the weights with a reduced data representation format prior and right after the data transfer takes place. The compress rate is adjusted vis-à-vis the L2-norm of the weights of every layer. In the third contribution, the thesis diminish the communication in model parallelizing a deep neural network. Instead of splitting and distributing the neurons of each layer to the available processes on the system, now it is done every other layers. This results in a 50% percent reduction of the communication whereas it introduces 50% of extra local FP computation.La comunicació entre els nodes de computació multi-core sorgeix com un dels factors principals que impacta el rendiment d’un sistema HPC d’avui en dia. I més, mentre més core es pusa, pitjor la situació. Per tant aquesta tesi explora les possibles tècniques per a reduir la comunicació en l’execució d’un programa paral·lel. Tot i això, resulta que no existeix una sola tècnica que pugui resoldre aquest obstacle. Tot i que els problemes en cada àmbit, com que té els seus propis caracristics, disposa variosos oportunitats per la reducció de comunicació. La tesi, en primer lloc, dins de l’àmbit de l’àlgebra lineal numèriques desenvolupa un algoritme IFCG que és una evolució de Pipelined CG. IFCG elimina les sincronitzacions normalment posa cap al final de cada iteració per augmentar el paral·lelisme. En la segona contribució, la tesi dirigeix l’atenció a reduir la necessitat de transferir els paràmetres entre el CPU i els GPUs durant l’entrenament d’una xarxa neuronal. Desenvolupa rutines ADT i AWP per comprimir i descomprimir els pesos amb una representació de dades reduïda abans i just desprès de la transferència. La representació es decideix dinàmicament segons el L2-norm dels pesos a cada capa. Al final la tesi disminueix la comunicació en paral·lelitzar el model duna xarxa neurona. En lloc de distribuir les neurones de cada capa als processos disponibles en el sistema, es fa cada dues capes. Així que corta com mitja de la comunicació. En canvi, com que distribueix només cada dues capes, les capes restes es repliquen, resulta que incorre en una augmenta de 50% de computació local.Postprint (published version
    corecore