130 research outputs found

    Throughput improvement for multi-hop UAV relaying

    Get PDF
    Unmanned aerial vehicle (UAV) relaying is one of the main technologies for UAV communications. It uses UAVs as relays in the sky to provide reliable wireless connection between remote users. In this paper, we consider a multi-hop UAV relaying system. To improve the spectrum efficiency of the system, we maximize the average end-to-end throughput from the source to the destination by jointly optimizing the bandwidth allocated to each hop, the transmit power for the source and relays, and the trajectories of the UAVs, subject to constraints on the total spectrum bandwidth, the average and peak transmit power, the UAV mobility and collision avoidance, and the information-causality of multi-hop relaying. The formulated optimization is non-convex. We propose an efficient algorithm to approximate and solve it, using the alternating optimization and successive convex optimization methods. Numerical results show that the proposed optimization significantly outperforms other benchmark schemes, verifying the effectiveness of our scheme

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Optimal UAS Assignments and Trajectories for Persistent Surveillance and Data Collection from a Wireless Sensor Network

    Get PDF
    This research developed a method for multiple Unmanned Aircraft Systems (UAS) to efficiently collect data from a Wireless Sensor Networks (WSN). WSN are composed of any number of fixed, ground-based sensors that collect and upload local environmental data to over flying UAS. The three-step method first uniquely assigns aircraft to specific sensors on the ground. Second, an efficient flight path is calculated to minimize the aircraft flight time required to verify their assigned sensors. Finally, sensors reporting relatively higher rates of local environmental activity are re-assigned to dedicated aircraft tasked with concentrating on only those sensors. This work was sponsored by the Air Force Research Laboratory, Control Sciences branch, at Wright Patterson AFB. Based on simulated scenarios and preliminary flight tests, optimal flight paths resulted in a 14 to 32 reduction in flight time and distance when compared to traditional flight planning methods
    • …
    corecore