220 research outputs found

    Novel Methods for the Time-Dependent Maxwell’s Equations and their Applications

    Full text link
    This dissertation investigates three different mathematical models based on the time domain Maxwell\u27s equations using three different numerical methods: a Yee scheme using a non-uniform grid, a nodal discontinuous Galerkin (nDG) method, and a newly developed discontinuous Galerkin method named the weak Galerkin (WG) method. The non-uniform Yee scheme is first applied to an electromagnetic metamaterial model. Stability and superconvergence error results are proved for the method, which are then confirmed through numerical results. Additionally, a numerical simulation of backwards wave propagation through a negative-index metamaterial is given using the presented method. Next, the nDG method is used to simulate signal propagation through a corrugated coaxial cable through the use of axisymmetric Maxwell\u27s equations. Stability and error analysis are performed for the semi-discrete method, and are verified through numerical results. The nDG method is then used to simulate signal propagation through coaxial cables with a number of different corrugations. Finally, the WG method is developed for the standard time-domain Maxwell\u27s equations. Similar to the other methods, stability and error analysis are performed on the method and are verified through a number of numerical experiments

    A New Nodal Stress Recovery Technique in Finite Element Method Using Colliding Bodies Optimization Algorithm

    Get PDF
    In Finite Element Method (FEM), the stress components are calculated within the elements firstly, and then these components are recovered to the nodes. For the recovery process, there are several well-known methods in which the increase of their accuracy imposes additional costs into the problem. In this paper, a new nodal stress recovery technique is proposed in which Colliding Bodies Optimization (CBO) Algorithm fits an appropriative function for nodal stress fields. The CBO employs this function to compute the stress components in the nodal coordinates. Therefore, a particular model to stress fields and its components will be available. It can be considered as a connection between analytical approaches and numerical methods, providing benefits of both categories. Finally, the accuracy, efficiency, and applicability of the new technique are investigated employing three diverse examples

    A General Framework for Constructing and Analyzing Mixed Finite Volume Methods on Quadrilateral Grids: The Overlapping Covolume Case

    Get PDF
    We present a general framework for constructing and analyzing finite volume methods applied to the mixed formulation of second-order elliptic problems on quadrilateral grids. The control volumes, or covolumes, in the grids overlap. An overlapping finite volume method of this type was first introduced by Russell in [T. F. Russell, Tech. report 3, Reservoir Simulation Research Corp., Tulsa, OK, 1995] and was tested for a variety of problems on rectangular and quadrilateral grids in [Z. Cai et al., Comput Geosci., 1 (1997), pp. 289–315]. Later in [S. H. Chou and D. Y. Kwak, SIAM J. Numer. Anal., 37 (2000), pp. 758–771], Chou and Kwak reformulated it as their mixed covolume method and proved optimal order error estimates using the covolume methodology from [S. H. Chou, Math. Comp., 66 (1997), pp. 85–104] and [S. H. Chou and D. Y. Kwak, SIAM J. Numer. Anal., 35 (1998), pp. 494–507]. However, their treatment was restricted to the case of diagonal coefficient tensor and rectangular grids since a different approach was needed for the quadrilateral (distorted rectangular) case. In this paper we give a new framework, which can handle not only the rectangular anisotropic case but also the anisotropic and irregular grid cases in which the locally supported test functions are images of the natural unit coordinate vectors under the Piola transformation. Our theory sheds light on how to create new test functions using quadratures and now covers Russell’s quadrilateral case

    Recovery Techniques For Finite Element Methods And Their Applications

    Get PDF
    Recovery techniques are important post-processing methods to obtain improved approximate solutions from primary data with reasonable cost. The practical us- age of recovery techniques is not only to improve the quality of approximation, but also to provide an asymptotically exact posteriori error estimators for adaptive meth- ods. This dissertation presents recovery techniques for nonconforming finite element methods and high order derivative as well as applications of gradient recovery. Our first target is to develop a systematic gradient recovery technique for Crouzeix- Raviart element. The proposed method uses finite element solution to build a better approximation of the exact gradient based on local least square fittings. Due to poly- nomial preserving property of least square fitting, it is easy to show that the new proposed method preserves quadratic polynomials. In addition, the proposed gra- dient recovery is linearly bounded. Numerical tests indicate the recovered gradient is superconvergent to the exact gradient for both second order elliptic equation and Stokes equation. The gradient recovery technique can be used in a posteriori error estimates for Crouzeix-Raviart element, which is relatively simple to implement and problem independent. Our second target is to propose and analyze a new effective Hessian recovery for continuous finite element of arbitrary order. The proposed Hessian recovery is based on polynomial preserving recovery. The proposed method preserves polynomials of degree (k + 1) on general unstructured meshes and polynomials of degree (k + 2) on translation invariant meshes. Based on it polynomial preserving property, we can able to prove superconvergence of the proposed method on mildly structured meshes. In addition, we establish the ultraconvergence result for the new Hessian recovery technique on translation invariant finite element space of arbitrary order. Our third target is to demonstrate application of gradient recovery in eigenvalue computation. We propose two superconvergent two-grid methods for elliptic eigen- value problems by taking advantage of two-gird method, two-space method, shifted- inverse power method, and gradient recovery enhancement. Theoretical and numer- ical results reveal that the proposed methods provide superconvergent eigenfunction approximation and ultraconvergent eigenvalue approximation. In addition, two mul- tilevel adaptive methods based recovery type a posterior error estimate are proposed

    Adaptive low and high-order hybridized methods for unsteady incompressible flow simulations

    Get PDF
    Tesi en modalitat de cotutela: Universitat Politècnica de Catalunya i Università degli Studi di PaviaSimulations of incompressible flows are performed on a daily basis to solve problems of practical and industrial interest in several fields of engineering, including automotive, aeronautical, mechanical and biomedical applications. Although finite volume (FV) methods are still the preferred choice by the industry due to their efficiency and robustness, sensitivity to mesh quality and limited accuracy represent two main bottlenecks of these approaches. This is especially critical in the context of transient phenomena, in which FV methods show excessive numerical diffusion. In this context, there has been a growing interest towards high-order discretisation strategies in last decades. In this PhD thesis, a high-order adaptive hybidisable discontinuous Galerkin (HDG) method is proposed for the approximation of steady and unsteady laminar incompressible Navier-Stokes equations. Voigt notation for symmetric second-order tensors is exploited to devise an HDG method for the Cauchy formulation of the momentum equation with optimal convergence properties, even when low-order polynomial degrees of approximation are considered. In addition, a postprocessing strategy accounting for rigid translational and rotational modes is proposed to construct an element-by-element superconvergent velocity field. The discrepancy between the computed and postprocessed velocities is utilised to define a local error indicator to drive degree adaptivity procedures and accurately capture localised features of the flow. The resulting HDG solver is thus extended to the case of transient problems via high-order time integration schemes, namely the explicit singly diagonal implicit Runge-Kutta (ESDIRK) schemes. In this context, the embedded explicit step is exploited to define an inexpensive estimate of the temporal error to devise an efficient timestep control strategy. Finally, in order to efficiently solve the global problem arising from the HDG discretisation, a preconditioned iterative solver is proposed. This is critical in the context of high-order approximations in three-dimensional domains leading to large-scale problems, especially in transient simulations. A block diagonal preconditioner coupled with an inexpensive approximation of the Schur complement of the matrix is proposed to reduce the computational cost of the overall HDG solver. Extensive numerical validation of two and three-dimensional steady and unsteady benchmark tests of viscous laminar incompressible flows is performed to validate the proposed methodology.Simulaciones de flujo incompresible se emplean a diario para resolver problemas de interés práctico e industrial en varios campos de la ingeniería, p.ej. en aplicaciones automovilísticas, aeronáuticas, mecánicas y biomédicas. Aunque los métodos de volúmenes finitos (FV) siguen siendo la opción preferida por la industria debido a su eficiencia y robustez, la sensibilidad a la calidad de la malla y la baja precisión representan dos limitaciones importantes para estas técnicas. Estas limitaciones son todavía más críticas en el contexto de simulaciones de fenómenos transitorios, donde los FV están penalizados por su excesiva difusión numérica. En este contexto, las estrategias de discretización de alto orden han ganado una popularidad creciente en las últimas décadas para problemas transitorios dónde se necesitan soluciones precisas. Esta tesis propone un método de Galerkin discontinuo híbrido (HDG), de alto orden y adaptativo para la aproximación de las ecuaciones de Navier-Stokes incomprensible laminar, en el caso estacionario y transitorio en el entorno de aplicaciones ingenieriles. Para ello, la notación de Voigt para tensores simétricos de segundo orden (habituales en mecánica de los medios continuos) permite introducir un método HDG para la formulación de Cauchy de la ecuación de momento. La novedad de este resultado reside en la convergencia óptima alcanzada por el método, incluso para aproximaciones de orden polinómico bajo. Además, se desarrolla una estrategia de post-proceso local para construir elemento a elemento un campo de velocidad súper-convergente, tomando en cuenta los modos rígidos de traslación y rotación. La discrepancia entre el campo de velocidad calculado y el súper-convergente, obtenido a través del post-proceso, permite definir un indicador del error local. De esta forma, se desarrolla una estrategia para realizar adecuar elemento a elemento el grado de la aproximación polinómica y así mejorar la precisión adaptándose a las características localizadas del flujo. Seguidamente, se extiende el método HDG propuesto al tratamiento de problemas dependientes del tiempo. Más concretamente, se consideran los esquemas de integración temporal de alto orden explicit singly diagonal implicit Runge-Kutta (ESDIRK). En este contexto, se utiliza el paso explícito embedded para calcular una estimación computacionalmente eficiente del error temporal y definir una estrategia de adaptividad del paso de tiempo. Finalmente, se desarrolla un precondicionador adaptado a la estrategia HDG que acelera la convergencia del método iterativo empleado y, de esta forma, obtener resoluciones eficaces del problema global surgido de la discretización HDG. Es importante resaltar la importancia de una herramienta de resolución eficiente para problemas de gran escala en el contexto de aproximaciones de alto orden y en dominios tridimensionales. Estas herramientas se hacen aún más criticas en simulaciones transitorias. Más concretamente, se proponen un precondicionador diagonal por bloques y una aproximación eficiente del complemento Schur de la matriz para reducir el coste computacional del método HDG. Para validar la metodología propuesta, se realizan varias simulaciones numéricas de flujo incompresible laminar viscoso, para problemas estacionarios y transitorios, en dos y tres dimensiones.Postprint (published version

    Pre- and postprocessing techniques for determining goodness of computational meshes

    Get PDF
    Research in error estimation, mesh conditioning, and solution enhancement for finite element, finite difference, and finite volume methods has been incorporated into AUDITOR, a modern, user-friendly code, which operates on 2D and 3D unstructured neutral files to improve the accuracy and reliability of computational results. Residual error estimation capabilities provide local and global estimates of solution error in the energy norm. Higher order results for derived quantities may be extracted from initial solutions. Within the X-MOTIF graphical user interface, extensive visualization capabilities support critical evaluation of results in linear elasticity, steady state heat transfer, and both compressible and incompressible fluid dynamics
    • …
    corecore