99 research outputs found

    Design and Performance Analysis of Low Latency Routing Algorithm based NoC for MPSoC

    Get PDF
    The Network on Chip is appropriate where System-on-Chip technology is scalable and adaptable. The Network on Chip is a new communication architecture with a number of benefits, including scalability, flexibility, and reusability, for applications built on Multiprocessor System on a Chip (MPSoC). However, the design of efficient NoC fabric with high performance is critically complex because of its architectural parameters. Identifying a suitable scheduling algorithm to resolve arbitration among ports to obtain high-speed data transfer in the router is one of the most significant phases while designing a Network on chip based Multiprocessor System on a Chip. Low latency, throughput, space utilization, energy consumption, and reliability for Network on chip fabric are all determined by the router. The performance of the NoC system is hampered by the deadlock issues that plague conventional routing algorithms. This work develops a novel routing algorithm to address the deadlock problem. In this paper, a deterministic shortest path deadlock-free routing method is developed based on the analysis of the Turn Model. In the 2D-mesh structure, the algorithm uses separate routing methods for the odd and even columns. This minimizes the number of paths for a single channel, congestion, and latency. Two test scenarios—one with and one without a load test—were used to evaluate the proposed model. For a zero-load network, three clock cycles are utilized to transfer the packets. For the load network, five clocks are utilized to transfer the packets. The latency is measured for both cases without load and with load test and the corresponding latency is 3ns and 7ns respectively.The proposed method has an 18.57Mbps throughput.  The area and power utilization for the proposed method are 69% (IO utilization) and 0.128W respectively. In order to validate the proposed method, the latency is compared with existing work and 50% latency is reduced both with and without congestion load

    On chip implement of deadlock avoidance in wormhole networks

    Get PDF
    This thesis gives a detailed description of the Application Specific Integrated Circuit (ASIC) design to avoid deadlocks in Wormhole Networks. Deadlock avoidance is the most critical issue while considering wormhole networks and should be avoided by any routing protocol and algorithm. A novel architecture for the Turn Prohibition Based Routing (TPBR) protocol has been proved to be efficient and was developed as a part of this work. This architecture for implementing the algorithm is divided into three parts. The first part determines the order of selccuon of the nodes, in the network to run the algorithm. The second part deals with the prohibition of the turns through the node which might possibly create a deadlock. The third part constructs a routing table, which will have the route from a source to a destination, considering the prohibited, turns into account. A VHDL model was developed and simulated using IEEE numeric-std package for this architecture. This model was synthesized with Cadence tools and the post synthesis simulations verified the functionality of the architecture. The physical design was created using the standard gate cell libraries and implemented in 0.35-micron CMOS technology

    An analytical model for virtual cut-through routing

    Full text link
    An analytical model of a network with 2-dim torus topology and virtual cut-through routing has been considered in order to find out and analyze certain relationships between network parameters, load and performance. An exact expression for the saturation point (message generation rate at which network saturates) and expressions for the latency as a function of the message generation rate under the assumptions of the “mean field” theory have been obtained. It has been found that the saturation point is inversely proportional to the message length and to the distance between the source and destination. The theoretical results are in a good agreement with small-scale simulation experiments.Accepted manuscrip

    Topology Agnostic Methods for Routing, Reconfiguration and Virtualization of Interconnection Networks

    Get PDF
    Modern computing systems, such as supercomputers, data centers and multicore chips, generally require efficient communication between their different system units; tolerance towards component faults; flexibility to expand or merge; and a high utilization of their resources. Interconnection networks are used in a variety of such computing systems in order to enable communication between their diverse system units. Investigation and proposal of new or improved solutions to topology agnostic routing and reconfiguration of interconnection networks are main objectives of this thesis. In addition, topology agnostic routing and reconfiguration algorithms are utilized in the development of new and flexible approaches to processor allocation. The thesis aims to present versatile solutions that can be used for the interconnection networks of a number of different computing systems. No particular routing algorithm was specified for an interconnection network technology which is now incorporated in Dolphin Express. The thesis states a set of criteria for a suitable routing algorithm, evaluates a number of existing routing algorithms, and recommend that one of the algorithms – which fulfils all of the criteria – is used. Further investigations demonstrate how this routing algorithm inherently supports fault-tolerance, and how it can be optimized for some network topologies. These considerations are also relevant for the InfiniBand interconnection network technology. Reconfiguration of interconnection networks (change of routing function) is a deadlock prone process. Some existing reconfiguration strategies include deadlock avoidance mechanisms that significantly reduce the network service offered to running applications. The thesis expands the area of application for one of the most versatile and efficient reconfiguration algorithms available in the literature, and proposes an optimization of this algorithm that improves the network service offered to running applications. Moreover, a new reconfiguration algorithm is presented that supports a replacement of the routing function without causing performance penalties. Processor allocation strategies that guarantee traffic-containment commonly pose strict requirements on the shape of partitions, and thus achieve only a limited utilization of a system’s computing resources. The thesis introduces two new approaches that are more flexible. Both approaches utilize the properties of a topology agnostic routing algorithm in order to enforce traffic-containment within arbitrarily shaped partitions. Consequently, a high resource utilization as well as isolation of traffic between different partitions is achieved

    Energy-aware synthesis for networks on chip architectures

    Full text link
    The Network on Chip (NoC) paradigm was introduced as a scalable communication infrastructure for future System-on-Chip applications. Designing application specific customized communication architectures is critical for obtaining low power, high performance solutions. Two significant design automation problems are the creation of an optimized configuration, given application requirement the implementation of this on-chip network. Automating the design of on-chip networks requires models for estimating area and energy, algorithms to effectively explore the design space and network component libraries and tools to generate the hardware description. Chip architects are faced with managing a wide range of customization options for individual components, routers and topology. As energy is of paramount importance, the effectiveness of any custom NoC generation approach lies in the availability of good energy models to effectively explore the design space. This thesis describes a complete NoC synthesis flow, called NoCGEN, for creating energy-efficient custom NoC architectures. Three major automation problems are addressed: custom topology generation, energy modeling and generation. An iterative algorithm is proposed to generate application specific point-to-point and packet-switched networks. The algorithm explores the design space for efficient topologies using characterized models and a system-level floorplanner for evaluating placement and wire-energy. Prior to our contribution, building an energy model required careful analysis of transistor or gate implementations. To alleviate the burden, an automated linear regression-based methodology is proposed to rapidly extract energy models for many router designs. The resulting models are cycle accurate with low-complexity and found to be within 10% of gate-level energy simulations, and execute several orders of magnitude faster than gate-level simulations. A hardware description of the custom topology is generated using a parameterizable library and custom HDL generator. Fully reusable and scalable network components (switches, crossbars, arbiters, routing algorithms) are described using a template approach and are used to compose arbitrary topologies. A methodology for building and composing routers and topologies using a template engine is described. The entire flow is implemented as several demonstrable extensible tools with powerful visualization functionality. Several experiments are performed to demonstrate the design space exploration capabilities and compare it against a competing min-cut topology generation algorithm

    Computer interconnection networks with virtual cut-through routing

    Get PDF
    This paper considers a model of a toroidal computer interconnection network with the virtual cut-through routing. The interrelationships between network parameters, load and performance are analyzed. An exact analytical expression for the saturation point and expressions for the latency as a function of the message generation rate under the mean field theory approximation have been obtained. The theoretical results have been corroborated with the results of simulation experiments for various values of network parameters. The network behavior has been found not depending on the torus linear dimensions provided that they are at least twice as large as the message path length. The saturation point has been found to be inversely proportional to the message length in good agreement with the analytical results. A good agreement with Little’s theorem has been found if the network remains in the steady state during the experiment.Accepted manuscrip

    Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity

    Get PDF
    Demand is increasing for high throughput processing of irregular streaming applications; examples of such applications from scientific and engineering domains include biological sequence alignment, network packet filtering, automated face detection, and big graph algorithms. With wide SIMD, lightweight threads, and low-cost thread-context switching, wide-SIMD architectures such as GPUs allow considerable flexibility in the way application work is assigned to threads. However, irregular applications are challenging to map efficiently onto wide SIMD because data-dependent filtering or replication of items creates an unpredictable data wavefront of items ready for further processing. Straightforward implementations of irregular applications on a wide-SIMD architecture are prone to load imbalance and reduced occupancy, while more sophisticated implementations require advanced use of parallel GPU operations to redistribute work efficiently among threads. This dissertation will present strategies for addressing the performance challenges of wavefront- irregular applications on wide-SIMD architectures. These strategies are embodied in a developer framework called Mercator that (1) allows developers to map irregular applications onto GPUs ac- cording to the streaming paradigm while abstracting from low-level data movement and (2) includes generalized techniques for transparently overcoming the obstacles to high throughput presented by wavefront-irregular applications on a GPU. Mercator forms the centerpiece of this dissertation, and we present its motivation, performance model, implementation, and extensions in this work

    Fault tolerant adaptive routing in multicomputer networks

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 149-152).by Thucydides Xanthopoulos.M.S
    • …
    corecore