5,648 research outputs found

    Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error

    Get PDF
    Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete H1H^1 norm best approximation error estimates for H2H^2 functions hold for arbitrary triangulations. However, similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate on the example of a special family of distorted triangulations that this dependence is essential, and due to the deterioration of the consistency error. We also provide examples of sequences of triangulations such that the nonconforming P1 Galerkin projections for a Poisson problem with polynomial solution do not converge or converge at arbitrarily slow speed. The results complement analogous findings for conforming P1 elements.Comment: 23 pages, 10 figure

    Exact asymptotics of the optimal Lp-error of asymmetric linear spline approximation

    Full text link
    In this paper we study the best asymmetric (sometimes also called penalized or sign-sensitive) approximation in the metrics of the space LpL_p, 1⩽p⩽∞1\leqslant p\leqslant\infty, of functions f∈C2([0,1]2)f\in C^2\left([0,1]^2\right) with nonnegative Hessian by piecewise linear splines s∈S(△N)s\in S(\triangle_N), generated by given triangulations △N\triangle_N with NN elements. We find the exact asymptotic behavior of optimal (over triangulations △N\triangle_N and splines s∈S(△N)s\in S(\triangle_N) error of such approximation as N→∞N\to \infty

    Geometry of Log-Concave Density Estimation

    Full text link
    Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on Rd\mathbb{R}^d that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.Comment: 22 pages, 3 figure

    Minimum-weight triangulation is NP-hard

    Full text link
    A triangulation of a planar point set S is a maximal plane straight-line graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a given point set that minimizes the sum of the edge lengths. We prove that the decision version of this problem is NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the gadgets is established with computer assistance, using dynamic programming on polygonal faces, as well as the beta-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures. This revision contains a few improvements in the expositio

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher

    Flip Distance Between Triangulations of a Planar Point Set is APX-Hard

    Full text link
    In this work we consider triangulations of point sets in the Euclidean plane, i.e., maximal straight-line crossing-free graphs on a finite set of points. Given a triangulation of a point set, an edge flip is the operation of removing one edge and adding another one, such that the resulting graph is again a triangulation. Flips are a major way of locally transforming triangular meshes. We show that, given a point set SS in the Euclidean plane and two triangulations T1T_1 and T2T_2 of SS, it is an APX-hard problem to minimize the number of edge flips to transform T1T_1 to T2T_2.Comment: A previous version only showed NP-completeness of the corresponding decision problem. The current version is the one of the accepted manuscrip
    • …
    corecore