56,047 research outputs found

    Quadratically-Regularized Optimal Transport on Graphs

    Full text link
    Optimal transportation provides a means of lifting distances between points on a geometric domain to distances between signals over the domain, expressed as probability distributions. On a graph, transportation problems can be used to express challenging tasks involving matching supply to demand with minimal shipment expense; in discrete language, these become minimum-cost network flow problems. Regularization typically is needed to ensure uniqueness for the linear ground distance case and to improve optimization convergence; state-of-the-art techniques employ entropic regularization on the transportation matrix. In this paper, we explore a quadratic alternative to entropic regularization for transport over a graph. We theoretically analyze the behavior of quadratically-regularized graph transport, characterizing how regularization affects the structure of flows in the regime of small but nonzero regularization. We further exploit elegant second-order structure in the dual of this problem to derive an easily-implemented Newton-type optimization algorithm.Comment: 27 page

    Knowledge Discovery in the SCADA Databases Used for the Municipal Power Supply System

    Full text link
    This scientific paper delves into the problems related to the develop-ment of intellectual data analysis system that could support decision making to manage municipal power supply services. The management problems of mu-nicipal power supply system have been specified taking into consideration modern tendencies shown by new technologies that allow for an increase in the energy efficiency. The analysis findings of the system problems related to the integrated computer-aided control of the power supply for the city have been given. The consideration was given to the hierarchy-level management decom-position model. The objective task targeted at an increase in the energy effi-ciency to minimize expenditures and energy losses during the generation and transportation of energy carriers to the Consumer, the optimization of power consumption at the prescribed level of the reliability of pipelines and networks and the satisfaction of Consumers has been defined. To optimize the support of the decision making a new approach to the monitoring of engineering systems and technological processes related to the energy consumption and transporta-tion using the technologies of geospatial analysis and Knowledge Discovery in databases (KDD) has been proposed. The data acquisition for analytical prob-lems is realized in the wireless heterogeneous medium, which includes soft-touch VPN segments of ZigBee technology realizing the 6LoWPAN standard over the IEEE 802.15.4 standard and also the segments of the networks of cellu-lar communications. JBoss Application Server is used as a server-based plat-form for the operation of the tools used for the retrieval of data collected from sensor nodes, PLC and energy consumption record devices. The KDD tools are developed using Java Enterprise Edition platform and Spring and ORM Hiber-nate technologies

    Slime mould imitation of Belgian transport networks: redundancy, bio-essential motorways, and dissolution

    Full text link
    Belgium is amongst few artificial countries, established on purpose, when Dutch and French speaking parts were joined in a single unit. This makes Belgium a particularly interesting testbed for studying bio-inspired techniques for simulation and analysis of vehicular transport networks. We imitate growth and formation of a transport network between major urban areas in Belgium using the acellular slime mould Physarum polycephalum. We represent the urban areas with the sources of nutrients. The slime mould spans the sources of nutrients with a network of protoplasmic tubes. The protoplasmic tubes represent the motorways. In an experimental laboratory analysis we compare the motorway network approximated by P. polycephalum and the man-made motorway network of Belgium. We evaluate the efficiency of the slime mould network and the motorway network using proximity graphs

    Metrics for Graph Comparison: A Practitioner's Guide

    Full text link
    Comparison of graph structure is a ubiquitous task in data analysis and machine learning, with diverse applications in fields such as neuroscience, cyber security, social network analysis, and bioinformatics, among others. Discovery and comparison of structures such as modular communities, rich clubs, hubs, and trees in data in these fields yields insight into the generative mechanisms and functional properties of the graph. Often, two graphs are compared via a pairwise distance measure, with a small distance indicating structural similarity and vice versa. Common choices include spectral distances (also known as λ\lambda distances) and distances based on node affinities. However, there has of yet been no comparative study of the efficacy of these distance measures in discerning between common graph topologies and different structural scales. In this work, we compare commonly used graph metrics and distance measures, and demonstrate their ability to discern between common topological features found in both random graph models and empirical datasets. We put forward a multi-scale picture of graph structure, in which the effect of global and local structure upon the distance measures is considered. We make recommendations on the applicability of different distance measures to empirical graph data problem based on this multi-scale view. Finally, we introduce the Python library NetComp which implements the graph distances used in this work
    corecore