50 research outputs found

    Machine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance

    Get PDF
    We investigate the performance of multi-user multiple-antenna downlink systems in which a BS serves multiple users via a shared wireless medium. In order to fully exploit the spatial diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS is equipped with M RF chains and N antennas, where M < N. Upon receiving pilot sequences to obtain the channel state information, the BS determines the best subset of M antennas for serving the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize the system sum rate subject to a transmit power constraint and QoS requirements. The JASPD overcomes the non-convexity of the formulated problem via a doubly iterative algorithm, in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that tries all valid antenna subsets. Although approaching the (near) global optimality, the JASPD suffers from a combinatorial complexity, which may limit its application in real-time network operations. To overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm (L-ASPA), which employs a DNN to establish underlaying relations between the key system parameters and the selected antennas. The proposed L-ASPD is robust against the number of users and their locations, BS's transmit power, as well as the small-scale channel fading. With a well-trained learning model, it is shown that the L-ASPD significantly outperforms baseline schemes based on the block diagonalization and a learning-assisted solution for broadcasting systems and achieves higher effective sum rate than that of the JASPA under limited processing time. In addition, we observed that the proposed L-ASPD can reduce the computation complexity by 95% while retaining more than 95% of the optimal performance.Comment: accepted to the IEEE Transactions on Wireless Communication

    Transmitter Optimization Techniques for Physical Layer Security

    Get PDF
    Information security is one of the most critical issues in wireless networks as the signals transmitted through wireless medium are more vulnerable for interception. Although the existing conventional security techniques are proven to be safe, the broadcast nature of wireless communications introduces different challenges in terms of key exchange and distributions. As a result, information theoretic physical layer security has been proposed to complement the conventional security techniques for enhancing security in wireless transmissions. On the other hand, the rapid growth of data rates introduces different challenges on power limited mobile devices in terms of energy requirements. Recently, research work on wireless power transfer claimed that it has been considered as a potential technique to extend the battery lifetime of wireless networks. However, the algorithms developed based on the conventional optimization approaches often require iterative techniques, which poses challenges for real-time processing. To meet the demanding requirements of future ultra-low latency and reliable networks, neural network (NN) based approach can be employed to determine the resource allocations in wireless communications. This thesis developed different transmission strategies for secure transmission in wireless communications. Firstly, transmitter designs are focused in a multiple-input single-output simultaneous wireless information and power transfer system with unknown eavesdroppers. To improve the performance of physical layer security and the harvested energy, artificial noise is incorporated into the network to mask the secret information between the legitimate terminals. Then, different secrecy energy efficiency designs are considered for a MISO underlay cognitive radio network, in the presence of an energy harvesting receiver. In particular, these designs are developed with different channel state information assumptions at the transmitter. Finally, two different power allocation designs are investigated for a cognitive radio network to maximize the secrecy rate of the secondary receiver: conventional convex optimization framework and NN based algorithm

    PHYSICAL LAYER SECURITY IN THE 5G HETEROGENEOUS WIRELESS SYSTEM WITH IMPERFECT CSI

    Get PDF
    5G is expected to serve completely heterogeneous scenarios where devices with low or high software and hardware complexity will coexist. This entails a security challenge because low complexity devices such as IoT sensors must still have secrecy in their communications. This project proposes tools to maximize the secrecy rate in a scenario with legitimate users and eavesdroppers considering: i) the limitation that low complexity users have in computational power and ii) the eavesdroppers? unwillingness to provide their channel state information to the base station. The tools have been designed based on the physical layer security field and solve the resource allocation from two different approaches that are suitable in different use cases: i) using convex optimization theory or ii) using classification neural networks. Results show that, while the convex approach provides the best secrecy performance, the learning approach is a good alternative for dynamic scenarios or when wanting to save transmitting power

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Machine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance

    Full text link
    We investigate the performance of multi-user multiple-antenna downlink systems in which a base station (BS) serves multiple users via a shared wireless medium. In order to fully exploit the spatial diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS is equipped with M RF chains and N antennas, where M <; N. Upon receiving pilot sequences to obtain the channel state information (CSI), the BS determines the best subset of M antennas for serving the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize the system sum rate subject to a transmit power constraint and quality of service (QoS) requirements. The JASPD algorithm overcomes the non-convexity of the formulated problem via a doubly iterative algorithm, in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that tests all valid antenna subsets. Although approaching (near) global optimality, the JASPD suffers from a combinatorial complexity, which may limit its application in real-time network operations. To overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm (L-ASPA), which employs a deep neural network (DNN) to establish underlaying relations between key system parameters and the selected antennas. The proposed L-ASPD algorithm is robust against the number of users and their locations, the transmit power of the BS, as well as the small-scale channel fading. With a well-trained learning model, it is shown that the L-ASPD algorithm significantly outperforms baseline schemes based on the block diagonalization and a learning-assisted solution for broadcasting systems and achieves a better effective sum rate than that of the JASPA under limited processing time. In addition, we observed that the proposed L-ASPD algorithm can reduce the computation complexity by 95% while retaining more than 95% of the optimal performance

    Intelligent and Secure Underwater Acoustic Communication Networks

    Get PDF
    Underwater acoustic (UWA) communication networks are promising techniques for medium- to long-range wireless information transfer in aquatic applications. The harsh and dynamic water environment poses grand challenges to the design of UWA networks. This dissertation leverages the advances in machine learning and signal processing to develop intelligent and secure UWA communication networks. Three research topics are studied: 1) reinforcement learning (RL)-based adaptive transmission in UWA channels; 2) reinforcement learning-based adaptive trajectory planning for autonomous underwater vehicles (AUVs) in under-ice environments; 3) signal alignment to secure underwater coordinated multipoint (CoMP) transmissions. First, a RL-based algorithm is developed for adaptive transmission in long-term operating UWA point-to-point communication systems. The UWA channel dynamics are learned and exploited to trade off energy consumption with information delivery latency. The adaptive transmission problem is formulated as a partially observable Markov decision process (POMDP) which is solved by a Monte Carlo sampling-based approach, and an expectation-maximization-type of algorithm is developed to recursively estimate the channel model parameters. The experimental data processing reveals that the proposed algorithm achieves a good balance between energy efficiency and information delivery latency. Secondly, an online learning-based algorithm is developed for adaptive trajectory planning of multiple AUVs in under-ice environments to reconstruct a water parameter field of interest. The field knowledge is learned online to guide the trajectories of AUVs for collection of informative water parameter samples in the near future. The trajectory planning problem is formulated as a Markov decision process (MDP) which is solved by an actor-critic algorithm, where the field knowledge is estimated online using the Gaussian process regression. The simulation results show that the proposed algorithm achieves the performance close to a benchmark method that assumes perfect field knowledge. Thirdly, the dissertation presents a signal alignment method to secure underwater CoMP transmissions of geographically distributed antenna elements (DAEs) against eavesdropping. Exploiting the low sound speed in water and the spatial diversity of DAEs, the signal alignment method is developed such that useful signals will collide at the eavesdropper while stay collision-free at the legitimate user. The signal alignment mechanism is formulated as a mixed integer and nonlinear optimization problem which is solved through a combination of the simulated annealing method and the linear programming. Taking the orthogonal frequency-division multiplexing (OFDM) as the modulation technique, simulation and emulated experimental results demonstrate that the proposed method significantly degrades the eavesdropper\u27s interception capability

    Reconfigurable Intelligent Surface for Physical Layer Security in 6G-IoT: Designs, Issues, and Advances

    Full text link
    Sixth-generation (6G) networks pose substantial security risks because confidential information is transmitted over wireless channels with a broadcast nature, and various attack vectors emerge. Physical layer security (PLS) exploits the dynamic characteristics of wireless environments to provide secure communications, while reconfigurable intelligent surfaces (RISs) can facilitate PLS by controlling wireless transmissions. With RIS-aided PLS, a lightweight security solution can be designed for low-end Internet of Things (IoT) devices, depending on the design scenario and communication objective. This article discusses RIS-aided PLS designs for 6G-IoT networks against eavesdropping and jamming attacks. The theoretical background and literature review of RIS-aided PLS are discussed, and design solutions related to resource allocation, beamforming, artificial noise, and cooperative communication are presented. We provide simulation results to show the effectiveness of RIS in terms of PLS. In addition, we examine the research issues and possible solutions for RIS modeling, channel modeling and estimation, optimization, and machine learning. Finally, we discuss recent advances, including STAR-RIS and malicious RIS.Comment: Accepted for IEEE Internet of Things Journa

    Enabling Technologies for 5G and Beyond: Bridging the Gap between Vision and Reality

    Get PDF
    It is common knowledge that the fifth generation (5G) of cellular networks will come with drastic transformation in the cellular systems capabilities and will redefine mobile services. 5G (and beyond) systems will be used for human interaction, in addition to person-to-machine and machine-to-machine communications, i.e., every-thing is connected to every-thing. These features will open a whole line of new business opportunities and contribute to the development of the society in many different ways, including developing and building smart cities, enhancing remote health care services, to name a few. However, such services come with an unprecedented growth of mobile traffic, which will lead to heavy challenges and requirements that have not been experienced before. Indeed, the new generations of cellular systems are required to support ultra-low latency services (less than one millisecond), and provide hundred times more data rate and connectivity, all compared to previous generations such as 4G. Moreover, they are expected to be highly secure due to the sensitivity of the transmitted information. Researchers from both academia and industry have been concerting significant efforts to develop new technologies that aim at enabling the new generation of cellular systems (5G and beyond) to realize their potential. Much emphasis has been put on finding new technologies that enhance the radio access network (RAN) capabilities as RAN is considered to be the bottleneck of cellular networks. Striking a balance between performance and cost has been at the center of the efforts that led to the newly developed technologies, which include non-orthogonal multiple access (NOMA), millimeter wave (mmWave) technology, self-organizing network (SON) and massive multiple-input multiple-output (MIMO). Moreover, physical layer security (PLS) has been praised for being a potential candidate for enforcing transmission security when combined with cryptography techniques. Although the main concepts of the aforementioned RAN key enabling technologies have been well defined, there are discrepancies between their intended (i.e., vision) performance and the achieved one. In fact, there is still much to do to bridge the gap between what has been promised by such technologies in terms of performance and what they might be able to achieve in real-life scenarios. This motivates us to identify the main reasons behind the aforementioned gaps and try to find ways to reduce such gaps. We first focus on NOMA where the main drawback of existing solutions is related to their poor performance in terms of spectral efficiency and connectivity. Another major drawback of existing NOMA solutions is that transmission rate per user decreases slightly with the number of users, which is a serious issue since future networks are expected to provide high connectivity. To this end, we develop NOMA solutions that could provide three times the achievable rate of existing solutions while maintaining a constant transmission rate per user regardless of the number of connected users. We then investigate the challenges facing mmWave transmissions. It has been demonstrated that such technology is highly sensitive to blockage, which limits its range of communication. To overcome this obstacle, we develop a beam-codebook based analog beam-steering scheme that achieves near maximum beamforming gain performance. The proposed technique has been tested and verified by real-life measurements performed at Bell Labs. Another line of research pursued in this thesis is investigating challenges pertaining to SON. It is known that radio access network self-planning is the most complex and sensitive task due to its impact on the cost of network deployment, etc., capital expenditure (CAPEX). To tackle this issue, we propose a comprehensive self-planning solution that provides all the planning parameters at once while guaranteeing that the system is optimally planned. The proposed scheme is compared to existing solutions and its superiority is demonstrated. We finally consider the communication secrecy problem and investigated the potential of employing PLS. Most of the existing PLS schemes are based on unrealistic assumptions, most notably is the assumption of having full knowledge about the whereabouts of the eavesdroppers. To solve this problem, we introduce a radically novel nonlinear precoding technique and a coding strategy that together allow to establish secure communication without any knowledge about the eavesdroppers. Moreover, we prove that it is possible to secure communications while achieving near transmitter-receiver channel capacity (the maximum theoretical rate)
    corecore