721 research outputs found

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Resource Allocation Techniques for Wireless Powered Communication Networks with Energy Storage Constraint

    Get PDF
    This paper studies multi-user wireless powered communication networks, where energy constrained users charge their energy storages by scavenging energy of the radio frequency signals radiated from a hybrid access point (H-AP). The energy is then utilized for the users' uplink information transmission to the H-AP in time division multiple access mode. In this system, we aim to maximize the uplink sum rate performance by jointly optimizing energy and time resource allocation for multiple users in both infinite capacity and finite capacity energy storage cases. First, when the users are equipped with the infinite capacity energy storages, we derive the optimal downlink energy transmission policy at the H-AP. Based on this result, analytical resource allocation solutions are obtained. Next, we propose the optimal energy and time allocation algorithm for the case where each user has finite capacity energy storage. Simulation results confirm that the proposed algorithms offer 30% average sum rate performance gain over conventional schemes

    Training Optimization for Energy Harvesting Communication Systems

    Full text link
    Energy harvesting (EH) has recently emerged as an effective way to solve the lifetime challenge of wireless sensor networks, as it can continuously harvest energy from the environment. Unfortunately, it is challenging to guarantee a satisfactory short-term performance in EH communication systems because the harvested energy is sporadic. In this paper, we consider the channel training optimization problem in EH communication systems, i.e., how to obtain accurate channel state information to improve the communication performance. In contrast to conventional communication systems, the optimization of the training power and training period in EH communication systems is a coupled problem, which makes such optimization very challenging. We shall formulate the optimal training design problem for EH communication systems, and propose two solutions that adaptively adjust the training period and power based on either the instantaneous energy profile or the average energy harvesting rate. Numerical and simulation results will show that training optimization is important in EH communication systems. In particular, it will be shown that for short block lengths, training optimization is critical. In contrast, for long block lengths, the optimal training period is not too sensitive to the value of the block length nor to the energy profile. Therefore, a properly selected fixed training period value can be used.Comment: 6 pages, 5 figures, Globecom 201
    corecore