143 research outputs found

    A Survey on the Application of Evolutionary Algorithms for Mobile Multihop Ad Hoc Network Optimization Problems

    Get PDF
    Evolutionary algorithms are metaheuristic algorithms that provide quasioptimal solutions in a reasonable time. They have been applied to many optimization problems in a high number of scientific areas. In this survey paper, we focus on the application of evolutionary algorithms to solve optimization problems related to a type of complex network likemobilemultihop ad hoc networks. Since its origin, mobile multihop ad hoc network has evolved causing new types of multihop networks to appear such as vehicular ad hoc networks and delay tolerant networks, leading to the solution of new issues and optimization problems. In this survey, we review the main work presented for each type of mobile multihop ad hoc network and we also present some innovative ideas and open challenges to guide further research in this topic

    Network Coding-Aware Routing in Wireless Networks

    Full text link

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Cross-layer signalling and middleware: a survey for inelastic soft real-time applications in MANETs

    Get PDF
    This paper provides a review of the different cross-layer design and protocol tuning approaches that may be used to meet a growing need to support inelastic soft real-time streams in MANETs. These streams are characterised by critical timing and throughput requirements and low packet loss tolerance levels. Many cross-layer approaches exist either for provision of QoS to soft real-time streams in static wireless networks or to improve the performance of real and non-real-time transmissions in MANETs. The common ground and lessons learned from these approaches, with a view to the potential provision of much needed support to real-time applications in MANETs, is therefore discussed

    Multilayer Traffic Engineering in Interworking Multihop wireless networks

    Get PDF
    The advancement in wireless networking and wireless device technology are paving the way for bringing the vision of ubiquitous communication to reality. This vision will be enabled by the interworking of existing wireless multihop wireless networks. However, the diversity in the design and operation of these wireless networks may not enable users to enjoy continuous network service as they traverse between networks. This paper presents a framework which ensures continuous service and sustains an acceptable service level quality for network users transiting between multiple multihop wireless networks. The focus is on the scenario where a user utilizes multiple hops to access any of the multiple networks. We classify the components of the framework into link discovery, resource optimization and routingprocesses. A set of analytical models and metrics are defined for these processes and the framework evaluated with simulations. The findings show that despite an increase in simultaneous network users, which degrades network performance, the framework is able to support quality continuous service for users transiting between networks

    Load balancing in multi-hop wireless ad hoc networks

    Get PDF
    In this thesis we study the load distribution and load balancing problem in wireless ad hoc networks. Using a discrete unit disk graph model of the network, we analyze the distribution of load induced by greedy routing in the network with an all-to-all communication pattern between the nodes. We derive an estimate for average load of the nodes in the network. We also calculate the expected load of a node as a function of its geometric coordinates in the network. We express the actual load of a node in the network as a random variable and obtain the parameters of this random variable. Using this random variable we derive an estimate for the maximum load of the nodes in the network. Our result is more accurate than previous studies which were based on a continuous model of the network. We analyze how different parameters of the network, i.e., number of nodes, transmission range, and different routing algorithms can affect the parameters of the load distribution. We give a technique to reduce the variance of the load distribution, and hence decrease the maximum load of the nodes in the network. Our technique can be combined with any location-based routing algorithm. We also introduce a class of algorithms that improve the maximum expected load of nodes in the network. Experimental results show that our algorithms outperform other existing algorithms in reducing the maximum load of the networ

    In-Network Processing For Mission-Criticalwireless Networked Sensing And Control: A Real-Time, Efficiency, And Resiliency Perspective

    Get PDF
    As wireless cyber-physical systems (WCPS) are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). In this dissertation, we explore the potentials of two INP methods, packet packing and network coding, on improving network performance while satisfying application QoS requirements. We find that not only can these two techniques increase the energy efficiency, reliability, and throughput of WCPS while satisfying QoS requirements of applications in a relatively static environment, but also they can provide low cost proactive protection against transient node failures in a more dynamic wireless environment. We first study the problem of jointly optimizing packet packing and the timeliness of data delivery. We identify the conditions under which the problem is strong NP-hard, and we find that the problem complexity heavily depends on aggregation constraints instead of network and traffic properties. For cases when the problem is NP-hard, we show that there is no polynomial-time approximation scheme (PTAS); for cases when the problem can be solved in polynomial time, we design polynomial time, offline algorithms for finding the optimal packet packing schemes. We design a distributed, online protocol tPack that schedules packet transmissions to maximize the local utility of packet packing at each node. We evaluate the properties of tPack in NetEye testbed. We find that jointly optimizing data delivery timeliness and packet packing and considering real-world aggregation constraints significantly improve network performance. We then work on the problem of minimizing the transmission cost of network coding based routing in sensor networks. We propose the first mathematical framework so far as we know on how to theoretically compute the expected transmission cost of NC-based routing in terms of expected number of transmission. Based on this framework, we design a polynomial-time greedy algorithm for forwarder set selection and prove its optimality on transmission cost minimization. We designed EENCR, an energy-efficient NC-based routing protocol that implement our forwarder set selection algorithm to minimize the overall transmission cost. Through comparative study on EENCR and other state-of-the-art routing protocols, we show that EENCR significantly outperforms CTP, MORE and CodeOR in delivery reliability, delivery cost and network goodput. Furthermore, we study the 1+1 proactive protection problem using network coding. We show that even under a simplified setting, finding two node-disjoint routing braids with minimal total cost is NP-hard. We then design a heuristic algorithm to construct two node-disjoint braids with a transmission cost upper bounded by two shortest node-disjoint paths. And we design ProNCP, a proactive NC-based protection protocol using similar design philosophy as in EENCR. We evaluate the performance of ProNCP under various transient network failure scenarios. Experiment results show that ProNCP is resilient to various network failure scenarios and provides a state performance in terms of reliability, delivery cost and goodput. Our findings in this dissertation explore the challenges, benefits and solutions in designing real-time, efficient, resilient and QoS-guaranteed wireless cyber-physical systems, and our solutions shed lights for future research on related topics
    • …
    corecore