2,777 research outputs found

    Optimal Time-Convex Hull under the Lp Metrics

    Full text link
    We consider the problem of computing the time-convex hull of a point set under the general LpL_p metric in the presence of a straight-line highway in the plane. The traveling speed along the highway is assumed to be faster than that off the highway, and the shortest time-path between a distant pair may involve traveling along the highway. The time-convex hull TCH(P){TCH}(P) of a point set PP is the smallest set containing both PP and \emph{all} shortest time-paths between any two points in TCH(P){TCH}(P). In this paper we give an algorithm that computes the time-convex hull under the LpL_p metric in optimal O(nlogn)O(n\log n) time for a given set of nn points and a real number pp with 1p1\le p \le \infty

    Geometric combinatorics and computational molecular biology: branching polytopes for RNA sequences

    Full text link
    Questions in computational molecular biology generate various discrete optimization problems, such as DNA sequence alignment and RNA secondary structure prediction. However, the optimal solutions are fundamentally dependent on the parameters used in the objective functions. The goal of a parametric analysis is to elucidate such dependencies, especially as they pertain to the accuracy and robustness of the optimal solutions. Techniques from geometric combinatorics, including polytopes and their normal fans, have been used previously to give parametric analyses of simple models for DNA sequence alignment and RNA branching configurations. Here, we present a new computational framework, and proof-of-principle results, which give the first complete parametric analysis of the branching portion of the nearest neighbor thermodynamic model for secondary structure prediction for real RNA sequences.Comment: 17 pages, 8 figure

    Tropical Principal Component Analysis and its Application to Phylogenetics

    Get PDF
    Principal component analysis is a widely-used method for the dimensionality reduction of a given data set in a high-dimensional Euclidean space. Here we define and analyze two analogues of principal component analysis in the setting of tropical geometry. In one approach, we study the Stiefel tropical linear space of fixed dimension closest to the data points in the tropical projective torus; in the other approach, we consider the tropical polytope with a fixed number of vertices closest to the data points. We then give approximative algorithms for both approaches and apply them to phylogenetics, testing the methods on simulated phylogenetic data and on an empirical dataset of Apicomplexa genomes.Comment: 28 page

    Max-sum diversity via convex programming

    Get PDF
    Diversity maximization is an important concept in information retrieval, computational geometry and operations research. Usually, it is a variant of the following problem: Given a ground set, constraints, and a function f()f(\cdot) that measures diversity of a subset, the task is to select a feasible subset SS such that f(S)f(S) is maximized. The \emph{sum-dispersion} function f(S)=x,ySd(x,y)f(S) = \sum_{x,y \in S} d(x,y), which is the sum of the pairwise distances in SS, is in this context a prominent diversification measure. The corresponding diversity maximization is the \emph{max-sum} or \emph{sum-sum diversification}. Many recent results deal with the design of constant-factor approximation algorithms of diversification problems involving sum-dispersion function under a matroid constraint. In this paper, we present a PTAS for the max-sum diversification problem under a matroid constraint for distances d(,)d(\cdot,\cdot) of \emph{negative type}. Distances of negative type are, for example, metric distances stemming from the 2\ell_2 and 1\ell_1 norm, as well as the cosine or spherical, or Jaccard distance which are popular similarity metrics in web and image search

    A Cycle-Based Formulation and Valid Inequalities for DC Power Transmission Problems with Switching

    Full text link
    It is well-known that optimizing network topology by switching on and off transmission lines improves the efficiency of power delivery in electrical networks. In fact, the USA Energy Policy Act of 2005 (Section 1223) states that the U.S. should "encourage, as appropriate, the deployment of advanced transmission technologies" including "optimized transmission line configurations". As such, many authors have studied the problem of determining an optimal set of transmission lines to switch off to minimize the cost of meeting a given power demand under the direct current (DC) model of power flow. This problem is known in the literature as the Direct-Current Optimal Transmission Switching Problem (DC-OTS). Most research on DC-OTS has focused on heuristic algorithms for generating quality solutions or on the application of DC-OTS to crucial operational and strategic problems such as contingency correction, real-time dispatch, and transmission expansion. The mathematical theory of the DC-OTS problem is less well-developed. In this work, we formally establish that DC-OTS is NP-Hard, even if the power network is a series-parallel graph with at most one load/demand pair. Inspired by Kirchoff's Voltage Law, we give a cycle-based formulation for DC-OTS, and we use the new formulation to build a cycle-induced relaxation. We characterize the convex hull of the cycle-induced relaxation, and the characterization provides strong valid inequalities that can be used in a cutting-plane approach to solve the DC-OTS. We give details of a practical implementation, and we show promising computational results on standard benchmark instances

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc
    corecore