3,984 research outputs found

    Content-Specific Broadcast Cellular Networks based on User Demand Prediction: A Revenue Perspective

    Full text link
    The Long Term Evolution (LTE) broadcast is a promising solution to cope with exponentially increasing user traffic by broadcasting common user requests over the same frequency channels. In this paper, we propose a novel network framework provisioning broadcast and unicast services simultaneously. For each serving file to users, a cellular base station determines either to broadcast or unicast the file based on user demand prediction examining the file's content specific characteristics such as: file size, delay tolerance, price sensitivity. In a network operator's revenue maximization perspective while not inflicting any user payoff degradation, we jointly optimize resource allocation, pricing, and file scheduling. In accordance with the state of the art LTE specifications, the proposed network demonstrates up to 32% increase in revenue for a single cell and more than a 7-fold increase for a 7 cell coordinated LTE broadcast network, compared to the conventional unicast cellular networks.Comment: 6 pages; This paper will appear in the Proc. of IEEE WCNC 201

    Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless Networks

    Full text link
    Emerging 5G systems will need to efficiently support both enhanced mobile broadband traffic (eMBB) and ultra-low-latency communications (URLLC) traffic. In these systems, time is divided into slots which are further sub-divided into minislots. From a scheduling perspective, eMBB resource allocations occur at slot boundaries, whereas to reduce latency URLLC traffic is pre-emptively overlapped at the minislot timescale, resulting in selective superposition/puncturing of eMBB allocations. This approach enables minimal URLLC latency at a potential rate loss to eMBB traffic. We study joint eMBB and URLLC schedulers for such systems, with the dual objectives of maximizing utility for eMBB traffic while immediately satisfying URLLC demands. For a linear rate loss model (loss to eMBB is linear in the amount of URLLC superposition/puncturing), we derive an optimal joint scheduler. Somewhat counter-intuitively, our results show that our dual objectives can be met by an iterative gradient scheduler for eMBB traffic that anticipates the expected loss from URLLC traffic, along with an URLLC demand scheduler that is oblivious to eMBB channel states, utility functions and allocation decisions of the eMBB scheduler. Next we consider a more general class of (convex/threshold) loss models and study optimal online joint eMBB/URLLC schedulers within the broad class of channel state dependent but minislot-homogeneous policies. A key observation is that unlike the linear rate loss model, for the convex and threshold rate loss models, optimal eMBB and URLLC scheduling decisions do not de-couple and joint optimization is necessary to satisfy the dual objectives. We validate the characteristics and benefits of our schedulers via simulation
    • …
    corecore