2,015 research outputs found

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks

    Get PDF
    This study is concerned with the event-triggered distributed H∞ state estimation problem for a class of discrete-time stochastic non-linear systems with packet dropouts in a sensor network. An event-triggered communication mechanism is adopted over the sensor network with hope to reduce the communication burden and the energy consumption, where the measurements on each sensor are transmitted only when a certain triggering condition is violated. Furthermore, a novel distributed state estimator is designed where the available innovations are not only from the individual sensor, but also from its neighbouring ones according to the given topology. The purpose of the problem under consideration is to design a set of distributed state estimators such that the dynamics of estimation errors is exponentially mean-square stable and also the prespecified H∞ disturbance rejection attenuation level is guaranteed. By utilising the property of the Kronecker product and the stochastic analysis approaches, sufficient conditions are established under which the addressed state estimation problem is recast as a convex optimisation one that can be easily solved via available software packages. Finally, a simulation example is utilised to illustrate the usefulness of the proposed design scheme of event-triggered distributed state estimators.This work was supported in part by Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61203139, 61473076, 61374127 and 61422301, the Shanghai Rising-Star Program of China under Grant 13QA1400100, the ShuGuang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of Germany

    Communication-aware motion planning in mobile networks

    Get PDF
    Over the past few years, considerable progress has been made in the area of networked robotic systems and mobile sensor networks. The vision of a mobile sensor network cooperatively learning and adapting in harsh unknown environments to achieve a common goal is closer than ever. In addition to sensing, communication plays a key role in the overall performance of a mobile network, as nodes need to cooperate to achieve their tasks and thus have to communicate vital information in environments that are typically challenging for communication. Therefore, in order to realize the full potentials of such networks, an integrative approach to sensing (information gathering), communication (information exchange), and motion planning is needed, such that each mobile sensor considers the impact of its motion decisions on both sensing and communication, and optimizes its trajectory accordingly. This is the main motivation for this dissertation. This dissertation focuses on communication-aware motion planning of mobile networks in the presence of realistic communication channels that experience path loss, shadowing and multipath fading. This is a challenging multi-disciplinary task. It requires an assessment of wireless link qualities at places that are not yet visited by the mobile sensors as well as a proper co-optimization of sensing, communication and navigation objectives, such that each mobile sensor chooses a trajectory that provides the best balance between its sensing and communication, while satisfying the constraints on its connectivity, motion and energy consumption. While some trajectories allow the mobile sensors to sense efficiently, they may not result in a good communication. On the other hand, trajectories that optimize communication may result in poor sensing. The main contribution of this dissertation is then to address these challenges by proposing a new paradigm for communication-aware motion planning in mobile networks. We consider three examples from networked robotics and mobile sensor network literature: target tracking, surveillance and dynamic coverage. For these examples, we show how probabilistic assessment of the channel can be used to integrate sensing, communication and navigation objectives when planning the motion in order to guarantee satisfactory performance of the network in realistic communication settings. Specifically, we characterize the performance of the proposed framework mathematically and unveil new and considerably more efficient system behaviors. Finally, since multipath fading cannot be assessed, proper strategies are needed to increase the robustness of the network to multipath fading and other modeling/channel assessment errors. We further devise such robustness strategies in the context of our communication-aware surveillance scenario. Overall, our results show the superior performance of the proposed motion planning approaches in realistic fading environments and provide an in-depth understanding of the underlying design trade-off space
    corecore