134 research outputs found

    Practical Reasoning for Very Expressive Description Logics

    Full text link
    Description Logics (DLs) are a family of knowledge representation formalisms mainly characterised by constructors to build complex concepts and roles from atomic ones. Expressive role constructors are important in many applications, but can be computationally problematical. We present an algorithm that decides satisfiability of the DL ALC extended with transitive and inverse roles and functional restrictions with respect to general concept inclusion axioms and role hierarchies; early experiments indicate that this algorithm is well-suited for implementation. Additionally, we show that ALC extended with just transitive and inverse roles is still in PSPACE. We investigate the limits of decidability for this family of DLs, showing that relaxing the constraints placed on the kinds of roles used in number restrictions leads to the undecidability of all inference problems. Finally, we describe a number of optimisation techniques that are crucial in obtaining implementations of the decision procedures, which, despite the worst-case complexity of the problem, exhibit good performance with real-life problems

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page

    An On-the-fly Tableau-based Decision Procedure for PDL-Satisfiability

    Get PDF
    We present a tableau-based algorithm for deciding satisfiability for propositional dynamic logic (PDL) which builds a finite rooted tree with ancestor loops and passes extra information from children to parents to separate good loops from bad loops during backtracking. It is easy to implement, with potential for parallelisation, because it constructs a pseudo-model ``on the fly'' by exploring each tableau branch independently. But its worst-case behaviour is 2EXPTIME rather than EXPTIME. A prototype implementation in the TWB (http://twb.rsise.anu.edu.au) is available.Comment: 26 pages, longer version of article in Methods for Modalities 2007; improved readability of proof

    And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and CPDL

    Get PDF
    Over the last forty years, computer scientists have invented or borrowed numerous logics for reasoning about digital systems. Here, I would like to concentrate on three of them: Linear Time Temporal Logic (LTL), branching time Computation Tree temporal Logic (CTL), and Propositional Dynamic Logic (PDL), with and without converse. More specifically, I would like to present results and techniques on how to solve the satisfiability problem in these logics, with global assumptions, using the tableau method. The issues that arise are the typical tensions between computational complexity, practicality and scalability. This is joint work with Linh Anh Nguyen, Pietro Abate, Linda Postniece, Florian Widmann and Jimmy Thomson
    • …
    corecore