14,619 research outputs found

    Computer aided synthesis: a game theoretic approach

    Full text link
    In this invited contribution, we propose a comprehensive introduction to game theory applied in computer aided synthesis. In this context, we give some classical results on two-player zero-sum games and then on multi-player non zero-sum games. The simple case of one-player games is strongly related to automata theory on infinite words. All along the article, we focus on general approaches to solve the studied problems, and we provide several illustrative examples as well as intuitions on the proofs.Comment: Invitation contribution for conference "Developments in Language Theory" (DLT 2017

    Application of Permutation Group Theory in Reversible Logic Synthesis

    Full text link
    The paper discusses various applications of permutation group theory in the synthesis of reversible logic circuits consisting of Toffoli gates with negative control lines. An asymptotically optimal synthesis algorithm for circuits consisting of gates from the NCT library is described. An algorithm for gate complexity reduction, based on equivalent replacements of gates compositions, is introduced. A new approach for combining a group-theory-based synthesis algorithm with a Reed-Muller-spectra-based synthesis algorithm is described. Experimental results are presented to show that the proposed synthesis techniques allow a reduction in input lines count, gate complexity or quantum cost of reversible circuits for various benchmark functions.Comment: In English, 15 pages, 2 figures, 7 tables. Proceeding of the RC 2016 conferenc

    Polynomial-time T-depth Optimization of Clifford+T circuits via Matroid Partitioning

    Full text link
    Most work in quantum circuit optimization has been performed in isolation from the results of quantum fault-tolerance. Here we present a polynomial-time algorithm for optimizing quantum circuits that takes the actual implementation of fault-tolerant logical gates into consideration. Our algorithm re-synthesizes quantum circuits composed of Clifford group and T gates, the latter being typically the most costly gate in fault-tolerant models, e.g., those based on the Steane or surface codes, with the purpose of minimizing both T-count and T-depth. A major feature of the algorithm is the ability to re-synthesize circuits with additional ancillae to reduce T-depth at effectively no cost. The tested benchmarks show up to 65.7% reduction in T-count and up to 87.6% reduction in T-depth without ancillae, or 99.7% reduction in T-depth using ancillae.Comment: Version 2 contains substantial improvements and extensions to the previous version. We describe a new, more robust algorithm and achieve significantly improved experimental result

    Near-Optimal Scheduling for LTL with Future Discounting

    Full text link
    We study the search problem for optimal schedulers for the linear temporal logic (LTL) with future discounting. The logic, introduced by Almagor, Boker and Kupferman, is a quantitative variant of LTL in which an event in the far future has only discounted contribution to a truth value (that is a real number in the unit interval [0, 1]). The precise problem we study---it naturally arises e.g. in search for a scheduler that recovers from an internal error state as soon as possible---is the following: given a Kripke frame, a formula and a number in [0, 1] called a margin, find a path of the Kripke frame that is optimal with respect to the formula up to the prescribed margin (a truly optimal path may not exist). We present an algorithm for the problem; it works even in the extended setting with propositional quality operators, a setting where (threshold) model-checking is known to be undecidable

    OBDD-Based Representation of Interval Graphs

    Full text link
    A graph G=(V,E)G = (V,E) can be described by the characteristic function of the edge set χE\chi_E which maps a pair of binary encoded nodes to 1 iff the nodes are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store χE\chi_E can lead to a (hopefully) compact representation. Given the OBDD as an input, symbolic/implicit OBDD-based graph algorithms can solve optimization problems by mainly using functional operations, e.g. quantification or binary synthesis. While the OBDD representation size can not be small in general, it can be provable small for special graph classes and then also lead to fast algorithms. In this paper, we show that the OBDD size of unit interval graphs is O( V /log V )O(\ | V \ | /\log \ | V \ |) and the OBDD size of interval graphs is $O(\ | V \ | \log \ | V \ |)whichbothimproveaknownresultfromNunkesserandWoelfel(2009).Furthermore,wecanshowthatusingourvariableorderandnodelabelingforintervalgraphstheworstcaseOBDDsizeis which both improve a known result from Nunkesser and Woelfel (2009). Furthermore, we can show that using our variable order and node labeling for interval graphs the worst-case OBDD size is \Omega(\ | V \ | \log \ | V \ |).Weusethestructureoftheadjacencymatricestoprovethesebounds.Thismethodmaybeofindependentinterestandcanbeappliedtoothergraphclasses.Wealsodevelopamaximummatchingalgorithmonunitintervalgraphsusing. We use the structure of the adjacency matrices to prove these bounds. This method may be of independent interest and can be applied to other graph classes. We also develop a maximum matching algorithm on unit interval graphs using O(\log \ | V \ |)operationsandacoloringalgorithmforunitandgeneralintervalsgraphsusing operations and a coloring algorithm for unit and general intervals graphs using O(\log^2 \ | V \ |)$ operations and evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic Concepts 201

    Digital IP Protection Using Threshold Voltage Control

    Full text link
    This paper proposes a method to completely hide the functionality of a digital standard cell. This is accomplished by a differential threshold logic gate (TLG). A TLG with nn inputs implements a subset of Boolean functions of nn variables that are linear threshold functions. The output of such a gate is one if and only if an integer weighted linear arithmetic sum of the inputs equals or exceeds a given integer threshold. We present a novel architecture of a TLG that not only allows a single TLG to implement a large number of complex logic functions, which would require multiple levels of logic when implemented using conventional logic primitives, but also allows the selection of that subset of functions by assignment of the transistor threshold voltages to the input transistors. To obfuscate the functionality of the TLG, weights of some inputs are set to zero by setting their device threshold to be a high VtV_t. The threshold voltage of the remaining transistors is set to low VtV_t to increase their transconductance. The function of a TLG is not determined by the cell itself but rather the signals that are connected to its inputs. This makes it possible to hide the support set of the function by essentially removing some variable from the support set of the function by selective assignment of high and low VtV_t to the input transistors. We describe how a standard cell library of TLGs can be mixed with conventional standard cells to realize complex logic circuits, whose function can never be discovered by reverse engineering. A 32-bit Wallace tree multiplier and a 28-bit 4-tap filter were synthesized on an ST 65nm process, placed and routed, then simulated including extracted parastics with and without obfuscation. Both obfuscated designs had much lower area (25%) and much lower dynamic power (30%) than their nonobfuscated CMOS counterparts, operating at the same frequency
    corecore