159 research outputs found

    Preserving Link Privacy in Social Network Based Systems

    Full text link
    A growing body of research leverages social network based trust relationships to improve the functionality of the system. However, these systems expose users' trust relationships, which is considered sensitive information in today's society, to an adversary. In this work, we make the following contributions. First, we propose an algorithm that perturbs the structure of a social graph in order to provide link privacy, at the cost of slight reduction in the utility of the social graph. Second we define general metrics for characterizing the utility and privacy of perturbed graphs. Third, we evaluate the utility and privacy of our proposed algorithm using real world social graphs. Finally, we demonstrate the applicability of our perturbation algorithm on a broad range of secure systems, including Sybil defenses and secure routing.Comment: 16 pages, 15 figure

    An Analysis of Graph Properties for Detecting Sybil Nodes in Social Networks

    Get PDF
    This research concerns the analysis of social networks using graph theory to find properties that can be used to determine Sybil nodes. This research also investigated the mixing time, which is one of the properties that many existing methods use for detecting Sybil attacks. The results showed that the mixing time does not reflect the difference between honest graphs and Sybil graphs. In addition, the properties of social graphs were studied and it was found that the average node distance is different in graphs containing Sybil nodes than in graphs with only honest nodes. Furthermore, the eigenvector centrality and the degree of Sybil nodes are correlated, while in honest nodes they are not

    Collusion in Peer-to-Peer Systems

    Get PDF
    Peer-to-peer systems have reached a widespread use, ranging from academic and industrial applications to home entertainment. The key advantage of this paradigm lies in its scalability and flexibility, consequences of the participants sharing their resources for the common welfare. Security in such systems is a desirable goal. For example, when mission-critical operations or bank transactions are involved, their effectiveness strongly depends on the perception that users have about the system dependability and trustworthiness. A major threat to the security of these systems is the phenomenon of collusion. Peers can be selfish colluders, when they try to fool the system to gain unfair advantages over other peers, or malicious, when their purpose is to subvert the system or disturb other users. The problem, however, has received so far only a marginal attention by the research community. While several solutions exist to counter attacks in peer-to-peer systems, very few of them are meant to directly counter colluders and their attacks. Reputation, micro-payments, and concepts of game theory are currently used as the main means to obtain fairness in the usage of the resources. Our goal is to provide an overview of the topic by examining the key issues involved. We measure the relevance of the problem in the current literature and the effectiveness of existing philosophies against it, to suggest fruitful directions in the further development of the field

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Detecting Sybil Attack in Blockchain and Preventing through Universal Unique Identifier in Health Care Sector for privacy preservation

    Get PDF
    Health care data requires data secrecy, confidentiality, and distribution through public networks. Blockchain is the latest and most secure framework through which health care data can be transferred on the public network. Blockchain has gained attention in recent year’s due to its decentralized, distributed, and immutable ledger framework. However, Blockchain is also susceptible to many attacks in the permission less network, one such attack is known as Sybil attack, where several malicious nodes are created by the single node and gain multiple undue advantages over the network. In this research work, the Blockchain network is created using the smart contract method which gets hampered due to Sybil attack. Thus, a novel method is proposed to prevent Sybil attack in the network for privacy preservation. Universal Unique Identifier code is used for identification and prevention of the Sybil attack in the self-created networks. Results depict that proposed method correctly identifies the chances of attack and the prevention from the attack. The approach has been evaluated on performance metrics namely, true positive rate and accuracy which were attained as 87.5 % and 91% respectively, in the small network. This demonstrates that the proposed work attains improved results as compared to other latest available methods
    • …
    corecore