6 research outputs found

    A new numerical method to solve pantograph delay differential equations with convergence analysis

    Get PDF
    Abstract The main aim presented in this article is to provide an efficient transferred Legendre pseudospectral method for solving pantograph delay differential equations. At the first step, we transform the problem into a continuous-time optimization problem and then utilize a transferred Legendre pseudospectral method to discretize the problem. By solving this discrete problem, we can attain the pointwise and continuous estimated solutions for the major pantograph delay differential equation. The convergence of method has been considered. Also, numerical experiments are described to show the performance and precision of the presented technique. Moreover, the obtained results are compared with those from other techniques

    A SPECTRAL METHOD FOR PANTOGRAPH-TYPE DELAY DIFFERENTIAL EQUATIONS AND ITS CONVERGENCE ANALYSIS

    Get PDF
    Abstract We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approximations to the exact solution. It is proved theoretically and demonstrated numerically that the proposed method converges exponentially provided that the data in the given pantograph delay differential equation are smooth. Mathematics subject classification: 65M06, 65N12

    Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind

    Get PDF
    Abstract This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel ϕ(t, s) = (t − s) −μ . In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233: 938-950], the error analysis for this approach is carried out for 0 < μ < 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a technical problem to extend the result to the case of Abel-type, i.e., μ = 1/2. In this work, we will not only extend the convergence analysis by Chen and Tang to the Abel-type but also establish the error estimates under a more general regularity assumption on the exact solution

    High-Order Multivariate Spectral Algorithms for High-Dimensional Nonlinear Weakly Singular Integral Equations with Delay

    Full text link
    One of the open problems in the numerical analysis of solutions to high-dimensional nonlinear integral equations with memory kernel and proportional delay is how to preserve the high-order accuracy for nonsmooth solutions. It is well-known that the solutions to these equations display a typical weak singularity at the initial time, which causes challenges in developing high-order and efficient numerical algorithms. The key idea of the proposed approach is to adopt a smoothing transformation for the multivariate spectral collocation method to circumvent the curse of singularity at the beginning of time. Therefore, the singularity of the approximate solution can be tailored to that of the exact one, resulting in high-order spectral collocation algorithms. Moreover, we provide a framework for studying the rate of convergence of the proposed algorithm. Finally, we give a numerical test example to show that the approach can preserve the nonsmooth solution to the underlying problems. © 2022 by the authors.King Saud University, KSUM. A. Zaky and A. Aldraiweesh extend their appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia)

    On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem

    Get PDF
    In this paper we deal with construction and analysis of a multiwavelet spectral element scheme for a generalized Cauchy type problem with Caputo fractional derivative. Numerical schemes for this type of problems, often suffer from the draw-back of spurious oscillations. A common remedy is to render the problem to an equivalent integral equation. For the generalized Cauchy type problem, a corresponding integral equation is of nonlinear Volterra type. In this paper we investigate wellposedness and convergence of a stabilizing multiwavelet scheme for a, one-dimensional case (in [a,\ua0b] or [0,\ua01]), of this problem. Based on multiwavelets, we construct an approximation procedure for the fractional integral operator that yields a linear system of equations with sparse coefficient matrix. In this setting, choosing an appropriate threshold, the number of non-zero coefficients in the system is substantially reduced. A severe obstacle in the convergence analysis is the lack of continuous derivatives in the vicinity of the inflow/ starting boundary point. We overcome this issue through separating a J (mesh)-dependent, small, neighborhood of a (or origin) from the interval, where we only take L2-norm. The estimate in this part relies on Chebyshev polynomials, viz. As reported by Richardson(Chebyshev interpolation for functions with endpoint singularities via exponential and double-exponential transforms, Oxford University, UK, 2012) and decreases, almost, exponentially by raising J. At the remaining part of the domain the solution is sufficiently regular to derive the desired optimal error bound. We construct such a modified scheme and analyze its wellposedness, efficiency and accuracy. The robustness of the proposed scheme is confirmed implementing numerical examples

    Differential-Algebraic Equations

    Get PDF
    Differential-Algebraic Equations (DAE) are today an independent field of research, which is gaining in importance and becoming of increasing interest for applications and mathematics itself. This workshop has drawn the balance after about 25 years investigations of DAEs and the research aims of the future were intensively discussed
    corecore