7,846 research outputs found

    Optimal submission problem in a limit order book with VaR constraints

    Get PDF
    We consider an optimal selection problem for bid and ask quotes subject to a value-at-Risk (VaR) constraint when arrivals of the buy and sell orders are governed by a Poisson process. The problem is formulated as a constrained utility maximization problem over a finite time horizon. Using a diffusion approximation to Poisson arrivals of market orders, the dynamic programming principle can be applied here. We propose an efficient procedure to solve this constrained utility maximization problem based on a successive approximation algorithm. Numerical examples with and without the VaR constraint are used to illustrate the effect of the risk constraint on the dealer's choices. We also conduct numerical experiments to analyze the impacts of the risk constraint on dealer's terminal profit. © 2012 IEEE.published_or_final_versionThe 5th International Joint Conference on Computational Sciences and Optimization (CSO 2012), Harbin, Heilongjiang Province, China, 23-26 June 2012. In Proceedings of the 5th CSO, 2012, p. 266-27

    A local non-parametric model for trade sign inference

    Get PDF
    We investigate a regularity in market order submission strategies for twelve stocks with large market capitalization on the Australian Stock Exchange. The regularity is evidenced by a predictable relationship between the trade sign (trade initiator), size of the trade, and the contents of the limit order book before the trade. We demonstrate this predictability by developing an empirical inference model to classify trades into buyer-initiated and seller-initiated. The model employs a local non-parametric method, k-nearest-neighbor, which in the past was used successfully for chaotic time series prediction. The k-nearest- neighbor with three predictor variables achieves an average out-of- sample classification accuracy of 71.40%, compared to 63.32% for the linear logistic regression with seven predictor variables. The result suggests that a non-linear approach may produce a more parsimonious trade sign inference model with a higher out-of-sample classification accuracy. Furthermore, for most of our stocks the observed regularity in market order submissions seems to have a memory of at least 30 trading days.Order submission, Trade classification, K-nearest-neighbor, Non-linear, Memory

    Stochastic Models of Limit Order Markets

    Get PDF
    During the last two decades most stock and derivatives exchanges in the world transitioned to electronic trading in limit order books, creating a need for a new set of quantitative models to describe these order-driven markets. This dissertation offers a collection of models that provide insight into the structure of modern financial markets, and can help to optimize trading decisions in practical applications. In the first part of the thesis we study the dynamics of prices, order flows and liquidity in limit order markets over short timescales. We propose a stylized order book model that predicts a particularly simple linear relation between price changes and order flow imbalance, defined as a difference between net changes in supply and demand. The slope in this linear relation, called a price impact coefficient, is inversely proportional in our model to market depth - a measure of liquidity. Our empirical results confirm both of these predictions. The linear relation between order flow imbalance and price changes holds for time intervals between 50 milliseconds and 5 minutes. The inverse relation between the price impact coefficient and market depth holds on longer timescales. These findings shed a new light on intraday variations in market volatility. According to our model volatility fluctuates due to changes in market depth or in order flow variance. Previous studies also found a positive correlation between volatility and trading volume, but in order-driven markets prices are determined by the limit order book activity, so the association between trading volume and volatility is unclear. We show how a spurious correlation between these variables can indeed emerge in our linear model due to time aggregation of high-frequency data. Finally, we observe short-term positive autocorrelation in order flow imbalance and discuss an application of this variable as a measure of adverse selection in limit order executions. Our results suggest that monitoring recent order flow can improve the quality of order executions in practice. In the second part of the thesis we study the problem of optimal order placement in a fragmented limit order market. To execute a trade, market participants can submit limit orders or market orders across various exchanges where a stock is traded. In practice these decisions are influenced by sizes of order queues and by statistical properties of order flows in each limit order book, and also by rebates that exchanges pay for limit order submissions. We present a realistic model of limit order executions and formalize the search for an optimal order placement policy as a convex optimization problem. Based on this formulation we study how various factors determine investor's order placement decisions. In a case when a single exchange is used for order execution, we derive an explicit formula for the optimal limit and market order quantities. Our solution shows that the optimal split between market and limit orders largely depends on one's tolerance to execution risk. Market orders help to alleviate this risk because they execute with certainty. Correspondingly, we find that an optimal order allocation shifts to these more expensive orders when the execution risk is of primary concern, for example when the intended trade quantity is large or when it is costly to catch up on the quantity after limit order execution fails. We also characterize the optimal solution in the general case of simultaneous order placement on multiple exchanges, and show that it sets execution shortfall probabilities to specific threshold values computed with model parameters. Finally, we propose a non-parametric stochastic algorithm that computes an optimal solution by resampling historical data and does not require specifying order flow distributions. A numerical implementation of this algorithm is used to study the sensitivity of an optimal solution to changes in model parameters. Our numerical results show that order placement optimization can bring a substantial reduction in trading costs, especially for small orders and in cases when order flows are relatively uncorrelated across trading venues. The order placement optimization framework developed in this thesis can also be used to quantify the costs and benefits of financial market fragmentation from the point of view of an individual investor. For instance, we find that a positive correlation between order flows, which is empirically observed in a fragmented U.S. equity market, increases the costs of trading. As the correlation increases it may become more expensive to trade in a fragmented market than it is in a consolidated market. In the third part of the thesis we analyze the dynamics of limit order queues at the best bid or ask of an exchange. These queues consist of orders submitted by a variety of market participants, yet existing order book models commonly assume that all orders have similar dynamics. In practice, some orders are submitted by trade execution algorithms in an attempt to buy or sell a certain quantity of assets under time constraints, and these orders are canceled if their realized waiting time exceeds a patience threshold. In contrast, high-frequency traders submit and cancel orders depending on the order book state and their orders are not driven by patience. The interaction between these two order types within a single FIFO queue leads bursts of order cancelations for small queues and anomalously long waiting times in large queues. We analyze a fluid model that describes the evolution of large order queues in liquid markets, taking into account the heterogeneity between order submission and cancelation strategies of different traders. Our results show that after a finite initial time interval, the queue reaches a specific structure where all orders from high-frequency traders stay in the queue until execution but most orders from execution algorithms exceed their patience thresholds and are canceled. This "order crowding" effect has been previously noted by participants in highly liquid stock and futures markets and was attributed to a large participation of high-frequency traders. In our model, their presence creates an additional workload, which increases queue waiting times for new orders. Our analysis of the fluid model leads to waiting time estimates that take into account the distribution of order types in a queue. These estimates are tested against a large dataset of realized limit order waiting times collected by a U.S. equity brokerage firm. The queue composition at a moment of order submission noticeably affects its waiting time and we find that assuming a single order type for all orders in the queue leads to unrealistic results. Estimates that assume instead a mix of heterogeneous orders in the queue are closer to empirical data. Our model for a limit order queue with heterogeneous order types also appears to be interesting from a methodological point of view. It introduces a new type of behavior in a queueing system where one class of jobs has state-dependent dynamics, while others are driven by patience. Although this model is motivated by the analysis of limit order books, it may find applications in studying other service systems with state-dependent abandonments

    A Portfolio Approach for the New Zealand Multi-Species Fisheries Management

    Get PDF
    Marine species are reproducible resource. Maintaining the stock level of marine species and the sustainability of fisheries development become critical issues in current scientific research areas due to the explosion of human population and exacerbation of natural environment. The traditional method that protects the marine species is the single species approach which set maximum sustainable yield (MSY) to prevent over-harvest. However, with the development of technology and comprehension of marine science, the single species approach has been found obsolete and incapable of dealing with problems of severe depletion of fish stocks and escalation of fisheries confliction. Studies show that when regulations are species specific and species are part of a multi-species fisheries, the catch levels of different species are correlated which result in correlation of net return from each species. This paper employ financial portfolio into fisheries, treat fish stocks as assets, model the fishers’ behaviour who face multiple targeting options to predict the optimal targeting strategies. This methodology is applied to New Zealand fisheries that are managed in Quota Management System (QMS) introduced in 1986. Species considered in this research are selected carefully based on two criteria. Efficient risk-return frontier will be generated that provides a combination of optimal strategies. Comparison between results and actual data will be presented. Potential explanations will be given so that further suggestions to fisheries can be made.Agribusiness, Environmental Economics and Policy, Production Economics, Productivity Analysis, Risk and Uncertainty,

    Predicting Bid-Ask Spreads Using Long Memory Autoregressive Conditional Poisson Models

    Get PDF
    We introduce a long memory autoregressive conditional Poisson (LMACP) model to model highly persistent time series of counts. The model is applied to forecast quoted bid-ask spreads, a key parameter in stock trading operations. It is shown that the LMACP nicely captures salient features of bid-ask spreads like the strong autocorrelation and discreteness of observations. We discuss theoretical properties of LMACP models and evaluate rolling window forecasts of quoted bid-ask spreads for stocks traded at NYSE and NASDAQ. We show that Poisson time series models significantly outperform forecasts from ARMA, ARFIMA, ACD and FIACD models. The economic significance of our results is supported by the evaluation of a trade schedule. Scheduling trades according to spread forecasts we realize cost savings of up to 13 % of spread transaction costs.Bid-ask spreads, forecasting, high-frequency data, stock market liquidity, count data time series, long memory Poisson autoregression

    Econometric analysis of financial count data and portfolio choice : a dynamic approach.

    Get PDF
    This thesis contributes to the econometric literature in two ways. Firstly, it introduces a new multivariate count model that presents advances in several aspects. Our multivariate time series count model can deal with issues of discreteness, overdispersion (variance greater than the mean) and both cross- and serial correlation, all at the same time. We follow a fully parametric approach and specify a marginal distribution for the counts where, conditionally on past observations the means follow a vector autoregressive process (VAR). This enables to attain improved inference on coefficients of exogenous regressors relative to the static Poisson regression, while modelling the serial correlation in a flexible way. The method is also innovative in the use of copulas, which builds the dependence structure between variables with given marginal distributions. This makes it possible to model the contemporaneous correlation between individual series in a very flexible way. Secondly, this thesis introduces a new approach to estimate the multivariate reduced rank regressions when the normality assumption is not satisfied. We propose to use the copula tool to generate multivariate distributions and, we show that this method can be applied in multivariate settings. In terms of financial literature, this thesis provides two contributions. Firstly, with our multivariate count model we analyze diverse market microstructure issues about the submission of different types of orders by traders on stock markets. With this model, we can fully take into account the interactions between submissions of the various types of orders, which represent an advantage with respect to univariate models such as the autoregressive conditional duration model. Secondly, it contributes to portfolio research proposing a new dynamic optimal portfolio allocation model in a Value-at-Risk setup. This model allows for time varying skewness and kurtosis of portfolio distributions and the model parameters are estimated by weighted maximum likelihood in an increasing window setup. This last property allows us to have more accurate portfolio recommendations in terms of the amount to invest in the risk-free interest rate and in the risky portfolio.Copulas; Multivariate count model; Optimal portfolio allocation; Value-at-Risk; Market microstructure;

    How does liquidity react to stress periods in a limit order market?

    Get PDF
    This paper looks at the interplay of volatility and liquidity on the Euronext trading platform during the December 2, 2002 to April 30, 2003 time period. Using transaction and order book data for some large- and mid-cap Brussels-traded stocks on Euronext, we study the ex-ante liquidity vs volatility and ex-post liquidity vs volatility relationships to ascertain if the high volatility led to decreases in liquidity and large trading costs. We show that the provision of liquidity remains adequate when volatility increases, although we do find that it is more costly to trade and that the market dynamics is somewhat affected when volatility is high.order book, volatility, liquidity

    High frequency dynamics of order flow

    Get PDF
    In this paper, we focus on the high frequency dynamics of limit order flow and market order flow. We compared the fitting performance of different models for the inter-arrival time of the order flow, including exponential distribution, gamma distribution and power law. We then studied the dependence of the placement of these two order flows, which can be captured by the self-excitation effect and mutual-excitation effect of Hawkes process. We also introduced a new model which combines the Hawkes features with the gamma distribution.\ud \ud Key words: High frequency dynamics; order flow; market microstructure; maximum likelihood estimation; Hawkes process; Hawkes-Gamma distribution
    • …
    corecore