21,006 research outputs found

    Guaranteed Rank Minimization via Singular Value Projection

    Full text link
    Minimizing the rank of a matrix subject to affine constraints is a fundamental problem with many important applications in machine learning and statistics. In this paper we propose a simple and fast algorithm SVP (Singular Value Projection) for rank minimization with affine constraints (ARMP) and show that SVP recovers the minimum rank solution for affine constraints that satisfy the "restricted isometry property" and show robustness of our method to noise. Our results improve upon a recent breakthrough by Recht, Fazel and Parillo (RFP07) and Lee and Bresler (LB09) in three significant ways: 1) our method (SVP) is significantly simpler to analyze and easier to implement, 2) we give recovery guarantees under strictly weaker isometry assumptions 3) we give geometric convergence guarantees for SVP even in presense of noise and, as demonstrated empirically, SVP is significantly faster on real-world and synthetic problems. In addition, we address the practically important problem of low-rank matrix completion (MCP), which can be seen as a special case of ARMP. We empirically demonstrate that our algorithm recovers low-rank incoherent matrices from an almost optimal number of uniformly sampled entries. We make partial progress towards proving exact recovery and provide some intuition for the strong performance of SVP applied to matrix completion by showing a more restricted isometry property. Our algorithm outperforms existing methods, such as those of \cite{RFP07,CR08,CT09,CCS08,KOM09,LB09}, for ARMP and the matrix-completion problem by an order of magnitude and is also significantly more robust to noise.Comment: An earlier version of this paper was submitted to NIPS-2009 on June 5, 200

    On convergence and optimality of maximum-likelihood APA

    Full text link
    Affine projection algorithm (APA) is a well-known algorithm in adaptive filtering applications such as audio echo cancellation. APA relies on three parameters: PP (projection order), μ\mu (step size) and δ\delta (regularization parameter). It is known that running APA for a fixed set of parameters leads to a tradeoff between convergence speed and accuracy. Therefore, various methods for adaptively setting the parameters have been proposed in the literature. Inspired by maximum likelihood (ML) estimation, we derive a new ML-based approach for adaptively setting the parameters of APA, which we refer to as ML-APA. For memoryless Gaussian inputs, we fully characterize the expected misalignment error of ML-APA as a function of iteration number and show that it converges to zero as O(1t)O({1\over t}). We further prove that the achieved error is asymptotically optimal. ML-APA updates its estimate once every PP samples. We also propose incremental ML-APA (IML-APA), which updates the coefficients at every time step and outperforms ML-APA in our simulations results. Our simulation results verify the analytical conclusions for memoryless inputs and show that the new algorithms also perform well for strongly correlated input signals

    Global Trajectory Optimisation : Can We Prune the Solution Space When Considering Deep Space Manoeuvres? [Final Report]

    Get PDF
    This document contains a report on the work done under the ESA/Ariadna study 06/4101 on the global optimization of space trajectories with multiple gravity assist (GA) and deep space manoeuvres (DSM). The study was performed by a joint team of scientists from the University of Reading and the University of Glasgow

    An hybrid system approach to nonlinear optimal control problems

    Full text link
    We consider a nonlinear ordinary differential equation and want to control its behavior so that it reaches a target by minimizing a cost function. Our approach is to use hybrid systems to solve this problem: the complex dynamic is replaced by piecewise affine approximations which allow an analytical resolution. The sequence of affine models then forms a sequence of states of a hybrid automaton. Given a sequence of states, we introduce an hybrid approximation of the nonlinear controllable domain and propose a new algorithm computing a controllable, piecewise convex approximation. The same way the nonlinear optimal control problem is replaced by an hybrid piecewise affine one. Stating a hybrid maximum principle suitable to our hybrid model, we deduce the global structure of the hybrid optimal control steering the system to the target

    A quadratically convergent algorithm for structured low-rank approximation

    No full text

    Adaptive Ranking Based Constraint Handling for Explicitly Constrained Black-Box Optimization

    Full text link
    A novel explicit constraint handling technique for the covariance matrix adaptation evolution strategy (CMA-ES) is proposed. The proposed constraint handling exhibits two invariance properties. One is the invariance to arbitrary element-wise increasing transformation of the objective and constraint functions. The other is the invariance to arbitrary affine transformation of the search space. The proposed technique virtually transforms a constrained optimization problem into an unconstrained optimization problem by considering an adaptive weighted sum of the ranking of the objective function values and the ranking of the constraint violations that are measured by the Mahalanobis distance between each candidate solution to its projection onto the boundary of the constraints. Simulation results are presented and show that the CMA-ES with the proposed constraint handling exhibits the affine invariance and performs similarly to the CMA-ES on unconstrained counterparts.Comment: 9 page
    • …
    corecore