1,156 research outputs found

    Training multi-layer spiking neural networks with plastic synaptic weights and delays

    Get PDF
    Spiking neural networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on corresponding hardware platforms and are very suitable for temporal information processing. However, how to efficiently train the spiking neural networks remains an open question, and most existing learning methods only consider the plasticity of synaptic weights. In this paper, we proposed a new supervised learning algorithm for multiple-layer spiking neural networks based on the typical SpikeProp method. In the proposed method, both the synaptic weights and delays are considered as adjustable parameters to improve both the biological plausibility and the learning performance. In addition, the proposed method inherits the advantages of SpikeProp, which can make full use of the temporal information of spikes. Various experiments are conducted to verify the performance of the proposed method, and the results demonstrate that the proposed method achieves a competitive learning performance compared with the existing related works. Finally, the differences between the proposed method and the existing mainstream multi-layer training algorithms are discussed

    Neuromodulatory effects on early visual signal processing

    Get PDF
    Understanding how the brain processes information and generates simple to complex behavior constitutes one of the core objectives in systems neuroscience. However, when studying different neural circuits, their dynamics and interactions researchers often assume fixed connectivity, overlooking a crucial factor - the effect of neuromodulators. Neuromodulators can modulate circuit activity depending on several aspects, such as different brain states or sensory contexts. Therefore, considering the modulatory effects of neuromodulators on the functionality of neural circuits is an indispensable step towards a more complete picture of the brain’s ability to process information. Generally, this issue affects all neural systems; hence this thesis tries to address this with an experimental and computational approach to resolve neuromodulatory effects on cell type-level in a well-define system, the mouse retina. In the first study, we established and applied a machine-learning-based classification algorithm to identify individual functional retinal ganglion cell types, which enabled detailed cell type-resolved analyses. We applied the classifier to newly acquired data of light-evoked retinal ganglion cell responses and successfully identified their functional types. Here, the cell type-resolved analysis revealed that a particular principle of efficient coding applies to all types in a similar way. In a second study, we focused on the issue of inter-experimental variability that can occur during the process of pooling datasets. As a result, further downstream analyses may be complicated by the subtle variations between the individual datasets. To tackle this, we proposed a theoretical framework based on an adversarial autoencoder with the objective to remove inter-experimental variability from the pooled dataset, while preserving the underlying biological signal of interest. In the last study of this thesis, we investigated the functional effects of the neuromodulator nitric oxide on the retinal output signal. To this end, we used our previously developed retinal ganglion cell type classifier to unravel type-specific effects and established a paired recording protocol to account for type-specific time-dependent effects. We found that certain retinal ganglion cell types showed adaptational type-specific changes and that nitric oxide had a distinct modulation of a particular group of retinal ganglion cells. In summary, I first present several experimental and computational methods that allow to study functional neuromodulatory effects on the retinal output signal in a cell type-resolved manner and, second, use these tools to demonstrate their feasibility to study the neuromodulator nitric oxide

    Towards Neuromorphic Gradient Descent: Exact Gradients and Low-Variance Online Estimates for Spiking Neural Networks

    Get PDF
    Spiking Neural Networks (SNNs) are biologically-plausible models that can run on low-powered non-Von Neumann neuromorphic hardware, positioning them as promising alternatives to conventional Deep Neural Networks (DNNs) for energy-efficient edge computing and robotics. Over the past few years, the Gradient Descent (GD) and Error Backpropagation (BP) algorithms used in DNNs have inspired various training methods for SNNs. However, the non-local and the reverse nature of BP, combined with the inherent non-differentiability of spikes, represent fundamental obstacles to computing gradients with SNNs directly on neuromorphic hardware. Therefore, novel approaches are required to overcome the limitations of GD and BP and enable online gradient computation on neuromorphic hardware. In this thesis, I address the limitations of GD and BP with SNNs by proposing three algorithms. First, I extend a recent method that computes exact gradients with temporally-coded SNNs by relaxing the firing constraint of temporal coding and allowing multiple spikes per neuron. My proposed method generalizes the computation of exact gradients with SNNs and enhances the tradeoffs between performance and various other aspects of spiking neurons. Next, I introduce a novel alternative to BP that computes low-variance gradient estimates in a local and online manner. Compared to other alternatives to BP, the proposed method demonstrates an improved convergence rate and increased performance with DNNs. Finally, I combine these two methods and propose an algorithm that estimates gradients with SNNs in a manner that is compatible with the constraints of neuromorphic hardware. My empirical results demonstrate the effectiveness of the resulting algorithm in training SNNs without performing BP

    2023-2024 Catalog

    Get PDF
    The 2023-2024 Governors State University Undergraduate and Graduate Catalog is a comprehensive listing of current information regarding:Degree RequirementsCourse OfferingsUndergraduate and Graduate Rules and Regulation

    Enhancing Neuromorphic Computing with Advanced Spiking Neural Network Architectures

    Get PDF
    This dissertation proposes ways to address current limitations of neuromorphic computing to create energy-efficient and adaptable systems for AI applications. It does so by designing novel spiking neural networks architectures that improve their performance. Specifically, the two proposed architectures address the issues of training complexity, hyperparameter selection, computational flexibility, and scarcity of neuromorphic training data. The first architecture uses auxiliary learning to improve training performance and data usage, while the second architecture leverages neuromodulation capability of spiking neurons to improve multitasking classification performance. The proposed architectures are tested on Intel\u27s Loihi2 neuromorphic chip using several neuromorphic datasets, such as NMIST, DVSCIFAR10, and DVS128-Gesture. The presented results demonstrate potential of the proposed architectures but also reveal some of their limitations which are proposed as future research

    Advanced Computing and Related Applications Leveraging Brain-inspired Spiking Neural Networks

    Full text link
    In the rapid evolution of next-generation brain-inspired artificial intelligence and increasingly sophisticated electromagnetic environment, the most bionic characteristics and anti-interference performance of spiking neural networks show great potential in terms of computational speed, real-time information processing, and spatio-temporal information processing. Data processing. Spiking neural network is one of the cores of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure and information transfer mode of biological neural networks. This paper summarizes the strengths, weaknesses and applicability of five neuronal models and analyzes the characteristics of five network topologies; then reviews the spiking neural network algorithms and summarizes the unsupervised learning algorithms based on synaptic plasticity rules and four types of supervised learning algorithms from the perspectives of unsupervised learning and supervised learning; finally focuses on the review of brain-like neuromorphic chips under research at home and abroad. This paper is intended to provide learning concepts and research orientations for the peers who are new to the research field of spiking neural networks through systematic summaries

    Accelerated Forgetting in People with Epilepsy: Pathologic Memory Loss, Its Neural Basis, and Potential Therapies

    Get PDF
    While forgetting is vital to human functioning, delineating between normative and disordered forgetting can become incredibly complex. This thesis characterizes a pathologic form of forgetting in epilepsy, identifies a neural basis, and investigates the potential of stimulation as a therapeutic tool. Chapter 2 presents a behavioral characterization of the time course of Accelerated Long-Term Forgetting (ALF) in people with epilepsy (PWE). This chapter shows evidence of ALF on a shorter time scale than previous studies, with a differential impact on recall and recognition. Chapter 3 builds upon the work in Chapter 2 by extending ALF time points and investigating the role of interictal epileptiform activity (IEA) in ALF. These findings lend support for distinct forgetting patterns between recall and recognition memory. We also demonstrate the contribution of hippocampal IEA during slow-wave sleep to this aberrant forgetting. Chapter 4 investigates the potential of intracranial stimulation to ameliorate IEA burden. Our findings suggest that stimulation does not appear to have a direct effect on IEA rate. Further studies are necessary to explore the potential of stimulation as a therapeutic tool outside of seizure cessation. Overall, this thesis provides further evidence and classification of long-term memory impairment in epilepsy and identifies a neural correlate that can be targeted for future clinical intervention

    Expressivity of Spiking Neural Networks

    Full text link
    This article studies the expressive power of spiking neural networks where information is encoded in the firing time of neurons. The implementation of spiking neural networks on neuromorphic hardware presents a promising choice for future energy-efficient AI applications. However, there exist very few results that compare the computational power of spiking neurons to arbitrary threshold circuits and sigmoidal neurons. Additionally, it has also been shown that a network of spiking neurons is capable of approximating any continuous function. By using the Spike Response Model as a mathematical model of a spiking neuron and assuming a linear response function, we prove that the mapping generated by a network of spiking neurons is continuous piecewise linear. We also show that a spiking neural network can emulate the output of any multi-layer (ReLU) neural network. Furthermore, we show that the maximum number of linear regions generated by a spiking neuron scales exponentially with respect to the input dimension, a characteristic that distinguishes it significantly from an artificial (ReLU) neuron. Our results further extend the understanding of the approximation properties of spiking neural networks and open up new avenues where spiking neural networks can be deployed instead of artificial neural networks without any performance loss
    • …
    corecore