84,880 research outputs found

    Profitable Scheduling on Multiple Speed-Scalable Processors

    Full text link
    We present a new online algorithm for profit-oriented scheduling on multiple speed-scalable processors. Moreover, we provide a tight analysis of the algorithm's competitiveness. Our results generalize and improve upon work by \textcite{Chan:2010}, which considers a single speed-scalable processor. Using significantly different techniques, we can not only extend their model to multiprocessors but also prove an enhanced and tight competitive ratio for our algorithm. In our scheduling problem, jobs arrive over time and are preemptable. They have different workloads, values, and deadlines. The scheduler may decide not to finish a job but instead to suffer a loss equaling the job's value. However, to process a job's workload until its deadline the scheduler must invest a certain amount of energy. The cost of a schedule is the sum of lost values and invested energy. In order to finish a job the scheduler has to determine which processors to use and set their speeds accordingly. A processor's energy consumption is power \Power{s} integrated over time, where \Power{s}=s^{\alpha} is the power consumption when running at speed ss. Since we consider the online variant of the problem, the scheduler has no knowledge about future jobs. This problem was introduced by \textcite{Chan:2010} for the case of a single processor. They presented an online algorithm which is αα+2eα\alpha^{\alpha}+2e\alpha-competitive. We provide an online algorithm for the case of multiple processors with an improved competitive ratio of αα\alpha^{\alpha}.Comment: Extended abstract submitted to STACS 201

    Throughput Maximization in Multiprocessor Speed-Scaling

    Full text link
    We are given a set of nn jobs that have to be executed on a set of mm speed-scalable machines that can vary their speeds dynamically using the energy model introduced in [Yao et al., FOCS'95]. Every job jj is characterized by its release date rjr_j, its deadline djd_j, its processing volume pi,jp_{i,j} if jj is executed on machine ii and its weight wjw_j. We are also given a budget of energy EE and our objective is to maximize the weighted throughput, i.e. the total weight of jobs that are completed between their respective release dates and deadlines. We propose a polynomial-time approximation algorithm where the preemption of the jobs is allowed but not their migration. Our algorithm uses a primal-dual approach on a linearized version of a convex program with linear constraints. Furthermore, we present two optimal algorithms for the non-preemptive case where the number of machines is bounded by a fixed constant. More specifically, we consider: {\em (a)} the case of identical processing volumes, i.e. pi,j=pp_{i,j}=p for every ii and jj, for which we present a polynomial-time algorithm for the unweighted version, which becomes a pseudopolynomial-time algorithm for the weighted throughput version, and {\em (b)} the case of agreeable instances, i.e. for which ri≀rjr_i \le r_j if and only if di≀djd_i \le d_j, for which we present a pseudopolynomial-time algorithm. Both algorithms are based on a discretization of the problem and the use of dynamic programming

    Reclaiming the energy of a schedule: models and algorithms

    Get PDF
    We consider a task graph to be executed on a set of processors. We assume that the mapping is given, say by an ordered list of tasks to execute on each processor, and we aim at optimizing the energy consumption while enforcing a prescribed bound on the execution time. While it is not possible to change the allocation of a task, it is possible to change its speed. Rather than using a local approach such as backfilling, we consider the problem as a whole and study the impact of several speed variation models on its complexity. For continuous speeds, we give a closed-form formula for trees and series-parallel graphs, and we cast the problem into a geometric programming problem for general directed acyclic graphs. We show that the classical dynamic voltage and frequency scaling (DVFS) model with discrete modes leads to a NP-complete problem, even if the modes are regularly distributed (an important particular case in practice, which we analyze as the incremental model). On the contrary, the VDD-hopping model leads to a polynomial solution. Finally, we provide an approximation algorithm for the incremental model, which we extend for the general DVFS model.Comment: A two-page extended abstract of this work appeared as a short presentation in SPAA'2011, while the long version has been accepted for publication in "Concurrency and Computation: Practice and Experience

    Energy-Efficient Multiprocessor Scheduling for Flow Time and Makespan

    Full text link
    We consider energy-efficient scheduling on multiprocessors, where the speed of each processor can be individually scaled, and a processor consumes power sαs^{\alpha} when running at speed ss, for α>1\alpha>1. A scheduling algorithm needs to decide at any time both processor allocations and processor speeds for a set of parallel jobs with time-varying parallelism. The objective is to minimize the sum of the total energy consumption and certain performance metric, which in this paper includes total flow time and makespan. For both objectives, we present instantaneous parallelism clairvoyant (IP-clairvoyant) algorithms that are aware of the instantaneous parallelism of the jobs at any time but not their future characteristics, such as remaining parallelism and work. For total flow time plus energy, we present an O(1)O(1)-competitive algorithm, which significantly improves upon the best known non-clairvoyant algorithm and is the first constant competitive result on multiprocessor speed scaling for parallel jobs. In the case of makespan plus energy, which is considered for the first time in the literature, we present an O(ln⁥1−1/αP)O(\ln^{1-1/\alpha}P)-competitive algorithm, where PP is the total number of processors. We show that this algorithm is asymptotically optimal by providing a matching lower bound. In addition, we also study non-clairvoyant scheduling for total flow time plus energy, and present an algorithm that achieves O(ln⁥P)O(\ln P)-competitive for jobs with arbitrary release time and O(ln⁥1/αP)O(\ln^{1/\alpha}P)-competitive for jobs with identical release time. Finally, we prove an Ω(ln⁥1/αP)\Omega(\ln^{1/\alpha}P) lower bound on the competitive ratio of any non-clairvoyant algorithm, matching the upper bound of our algorithm for jobs with identical release time

    SELFISHMIGRATE: A Scalable Algorithm for Non-clairvoyantly Scheduling Heterogeneous Processors

    Full text link
    We consider the classical problem of minimizing the total weighted flow-time for unrelated machines in the online \emph{non-clairvoyant} setting. In this problem, a set of jobs JJ arrive over time to be scheduled on a set of MM machines. Each job jj has processing length pjp_j, weight wjw_j, and is processed at a rate of ℓij\ell_{ij} when scheduled on machine ii. The online scheduler knows the values of wjw_j and ℓij\ell_{ij} upon arrival of the job, but is not aware of the quantity pjp_j. We present the {\em first} online algorithm that is {\em scalable} ((1+\eps)-speed O(1Ï”2)O(\frac{1}{\epsilon^2})-competitive for any constant \eps > 0) for the total weighted flow-time objective. No non-trivial results were known for this setting, except for the most basic case of identical machines. Our result resolves a major open problem in online scheduling theory. Moreover, we also show that no job needs more than a logarithmic number of migrations. We further extend our result and give a scalable algorithm for the objective of minimizing total weighted flow-time plus energy cost for the case of unrelated machines and obtain a scalable algorithm. The key algorithmic idea is to let jobs migrate selfishly until they converge to an equilibrium. Towards this end, we define a game where each job's utility which is closely tied to the instantaneous increase in the objective the job is responsible for, and each machine declares a policy that assigns priorities to jobs based on when they migrate to it, and the execution speeds. This has a spirit similar to coordination mechanisms that attempt to achieve near optimum welfare in the presence of selfish agents (jobs). To the best our knowledge, this is the first work that demonstrates the usefulness of ideas from coordination mechanisms and Nash equilibria for designing and analyzing online algorithms

    Separable Convex Optimization with Nested Lower and Upper Constraints

    Full text link
    We study a convex resource allocation problem in which lower and upper bounds are imposed on partial sums of allocations. This model is linked to a large range of applications, including production planning, speed optimization, stratified sampling, support vector machines, portfolio management, and telecommunications. We propose an efficient gradient-free divide-and-conquer algorithm, which uses monotonicity arguments to generate valid bounds from the recursive calls, and eliminate linking constraints based on the information from sub-problems. This algorithm does not need strict convexity or differentiability. It produces an Ï”\epsilon-approximate solution for the continuous problem in O(nlog⁥mlog⁥nBÏ”)\mathcal{O}(n \log m \log \frac{n B}{\epsilon}) time and an integer solution in O(nlog⁥mlog⁥B)\mathcal{O}(n \log m \log B) time, where nn is the number of decision variables, mm is the number of constraints, and BB is the resource bound. A complexity of O(nlog⁥m)\mathcal{O}(n \log m) is also achieved for the linear and quadratic cases. These are the best complexities known to date for this important problem class. Our experimental analyses confirm the good performance of the method, which produces optimal solutions for problems with up to 1,000,000 variables in a few seconds. Promising applications to the support vector ordinal regression problem are also investigated
    • 

    corecore