181,807 research outputs found

    Pattern Matching in Multiple Streams

    Full text link
    We investigate the problem of deterministic pattern matching in multiple streams. In this model, one symbol arrives at a time and is associated with one of s streaming texts. The task at each time step is to report if there is a new match between a fixed pattern of length m and a newly updated stream. As is usual in the streaming context, the goal is to use as little space as possible while still reporting matches quickly. We give almost matching upper and lower space bounds for three distinct pattern matching problems. For exact matching we show that the problem can be solved in constant time per arriving symbol and O(m+s) words of space. For the k-mismatch and k-difference problems we give O(k) time solutions that require O(m+ks) words of space. In all three cases we also give space lower bounds which show our methods are optimal up to a single logarithmic factor. Finally we set out a number of open problems related to this new model for pattern matching.Comment: 13 pages, 1 figur

    Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

    Get PDF
    Given a static reference string RR and a source string SS, a relative compression of SS with respect to RR is an encoding of SS as a sequence of references to substrings of RR. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string SS is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem

    Solving String Problems on Graphs Using the Labeled Direct Product

    Get PDF
    Suffix trees are an important data structure at the core of optimal solutions to many fundamental string problems, such as exact pattern matching, longest common substring, matching statistics, and longest repeated substring. Recent lines of research focused on extending some of these problems to vertex-labeled graphs, either by using efficient ad-hoc approaches which do not generalize to all input graphs, or by indexing difficult graphs and having worst-case exponential complexities. In the absence of an ubiquitous and polynomial tool like the suffix tree for labeled graphs, we introduce the labeled direct product of two graphs as a general tool for obtaining optimal algorithms in the worst case: we obtain conceptually simpler algorithms for the quadratic problems of string matching (SMLG) and longest common substring (LCSP) in labeled graphs. Our algorithms run in time linear in the size of the labeled product graph, which may be smaller than quadratic for some inputs, and their run-time is predictable, because the size of the labeled direct product graph can be precomputed efficiently. We also solve LCSP on graphs containing cycles, which was left as an open problem by Shimohira et al. in 2011. To show the power of the labeled product graph, we also apply it to solve the matching statistics (MSP) and the longest repeated string (LRSP) problems in labeled graphs. Moreover, we show that our (worst-case quadratic) algorithms are also optimal, conditioned on the Orthogonal Vectors Hypothesis. Finally, we complete the complexity picture around LRSP by studying it on undirected graphs.Peer reviewe

    A Necessary and Sufficient Condition for Graph Matching to be equivalent to Clique Search

    Get PDF
    This paper formulates a necessary and sufficient condition for a generic graph matching problem to be equivalent to the maximum vertex and edge weight clique problem in a derived association graph. The consequences of this results are threefold: first, the condition is general enough to cover a broad range of practical graph matching problems; second, a proof to establish equivalence between graph matching and clique search reduces to showing that a given graph matching problem satisfies the proposed condition;\ud and third, the result sets the scene for generic continuous solutions for a broad range of graph matching problems. To illustrate the mathematical framework, we apply it to a number of graph matching problems, including the problem of determining the graph edit distance

    An Improved Excitation Matching Method based on an Ant Colony Optimization for Suboptimal-Free Clustering in Sum-Difference Compromise Synthesis

    Get PDF
    Dealing with an excitation matching method, this paper presents a global optimization strategy for the optimal clustering in sum-difference compromise linear arrays. Starting from a combinatorial formulation of the problem at hand, the proposed technique is aimed at determining the sub-array configuration expressed as the optimal path inside a directed acyclic graph structure modelling the solution space. Towards this end, an ant colony metaheuristic is used to benefit of its hill-climbing properties in dealing with the non-convexity of the sub-arraying as well as in managing graph searches. A selected set of numerical experiments are reported to assess the efficiency and current limitations of the ant-based strategy also in comparison with previous local combinatorial search methods. (c) 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

    Get PDF
    Given a static reference string R and a source string S, a relative compression of S with respect to R is an encoding of S as a sequence of references to substrings of R. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string S is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem
    • …
    corecore