1,958 research outputs found

    Hybrid Rounding Techniques for Knapsack Problems

    Get PDF
    We address the classical knapsack problem and a variant in which an upper bound is imposed on the number of items that can be selected. We show that appropriate combinations of rounding techniques yield novel and powerful ways of rounding. As an application of these techniques, we present a linear-storage Polynomial Time Approximation Scheme (PTAS) and a Fully Polynomial Time Approximation Scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in linear time. This linear complexity bound gives a substantial improvement of the best previously known polynomial bounds.Comment: 19 LaTeX page

    Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack

    Get PDF
    The area of parameterized approximation seeks to combine approximation and parameterized algorithms to obtain, e.g., (1+epsilon)-approximations in f(k,epsilon)n^O(1) time where k is some parameter of the input. The goal is to overcome lower bounds from either of the areas. We obtain the following results on parameterized approximability: - In the maximum independent set of rectangles problem (MISR) we are given a collection of n axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [Marx, ESA\u2705]. The best-known polynomial-time approximation factor is O(log log n) [Chalermsook and Chuzhoy, SODA\u2709] and it admits a QPTAS [Adamaszek and Wiese, FOCS\u2713; Chuzhoy and Ene, FOCS\u2716]. Here we present a parameterized approximation scheme (PAS) for MISR, i.e. an algorithm that, for any given constant epsilon>0 and integer k>0, in time f(k,epsilon)n^g(epsilon), either outputs a solution of size at least k/(1+epsilon), or declares that the optimum solution has size less than k. - In the (2-dimensional) geometric knapsack problem (2DK) we are given an axis-aligned square knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate a maximum cardinality subset of items into the knapsack so that the selected items do not overlap. In the version of 2DK with rotations (2DKR), we are allowed to rotate items by 90 degrees. Both variants are NP-hard, and the best-known polynomial-time approximation factor is 2+epsilon [Jansen and Zhang, SODA\u2704]. These problems admit a QPTAS for polynomially bounded item sizes [Adamaszek and Wiese, SODA\u2715]. We show that both variants are W[1]-hard. Furthermore, we present a PAS for 2DKR. For all considered problems, getting time f(k,epsilon)n^O(1), rather than f(k,epsilon)n^g(epsilon), would give FPT time f\u27(k)n^O(1) exact algorithms by setting epsilon=1/(k+1), contradicting W[1]-hardness. Instead, for each fixed epsilon>0, our PASs give (1+epsilon)-approximate solutions in FPT time. For both MISR and 2DKR our techniques also give rise to preprocessing algorithms that take n^g(epsilon) time and return a subset of at most k^g(epsilon) rectangles/items that contains a solution of size at least k/(1+epsilon) if a solution of size k exists. This is a special case of the recently introduced notion of a polynomial-size approximate kernelization scheme [Lokshtanov et al., STOC\u2717]

    The Geometry of Scheduling

    Full text link
    We consider the following general scheduling problem: The input consists of n jobs, each with an arbitrary release time, size, and a monotone function specifying the cost incurred when the job is completed at a particular time. The objective is to find a preemptive schedule of minimum aggregate cost. This problem formulation is general enough to include many natural scheduling objectives, such as weighted flow, weighted tardiness, and sum of flow squared. Our main result is a randomized polynomial-time algorithm with an approximation ratio O(log log nP), where P is the maximum job size. We also give an O(1) approximation in the special case when all jobs have identical release times. The main idea is to reduce this scheduling problem to a particular geometric set-cover problem which is then solved using the local ratio technique and Varadarajan's quasi-uniform sampling technique. This general algorithmic approach improves the best known approximation ratios by at least an exponential factor (and much more in some cases) for essentially all of the nontrivial common special cases of this problem. Our geometric interpretation of scheduling may be of independent interest.Comment: Conference version in FOCS 201

    Proximity results and faster algorithms for Integer Programming using the Steinitz Lemma

    Full text link
    We consider integer programming problems in standard form max{cTx:Ax=b,x0,xZn}\max \{c^Tx : Ax = b, \, x\geq 0, \, x \in Z^n\} where AZm×nA \in Z^{m \times n}, bZmb \in Z^m and cZnc \in Z^n. We show that such an integer program can be solved in time (mΔ)O(m)b2(m \Delta)^{O(m)} \cdot \|b\|_\infty^2, where Δ\Delta is an upper bound on each absolute value of an entry in AA. This improves upon the longstanding best bound of Papadimitriou (1981) of (mΔ)O(m2)(m\cdot \Delta)^{O(m^2)}, where in addition, the absolute values of the entries of bb also need to be bounded by Δ\Delta. Our result relies on a lemma of Steinitz that states that a set of vectors in RmR^m that is contained in the unit ball of a norm and that sum up to zero can be ordered such that all partial sums are of norm bounded by mm. We also use the Steinitz lemma to show that the 1\ell_1-distance of an optimal integer and fractional solution, also under the presence of upper bounds on the variables, is bounded by m(2mΔ+1)mm \cdot (2\,m \cdot \Delta+1)^m. Here Δ\Delta is again an upper bound on the absolute values of the entries of AA. The novel strength of our bound is that it is independent of nn. We provide evidence for the significance of our bound by applying it to general knapsack problems where we obtain structural and algorithmic results that improve upon the recent literature.Comment: We achieve much milder dependence of the running time on the largest entry in $b
    corecore