5,617 research outputs found

    Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home Energy Management

    Get PDF
    As energy demand continues to increase, demand response (DR) programs in the electricity distribution grid are gaining momentum and their adoption is set to grow gradually over the years ahead. Demand response schemes seek to incentivise consumers to use green energy and reduce their electricity usage during peak periods which helps support grid balancing of supply-demand and generate revenue by selling surplus of energy back to the grid. This paper proposes an effective energy management system for residential demand response using Reinforcement Learning (RL) and Fuzzy Reasoning (FR). RL is considered as a model-free control strategy which learns from the interaction with its environment by performing actions and evaluating the results. The proposed algorithm considers human preference by directly integrating user feedback into its control logic using fuzzy reasoning as reward functions. Q-learning, a RL strategy based on a reward mechanism, is used to make optimal decisions to schedule the operation of smart home appliances by shifting controllable appliances from peak periods, when electricity prices are high, to off-peak hours, when electricity prices are lower without affecting the customer’s preferences. The proposed approach works with a single agent to control 14 household appliances and uses a reduced number of state-action pairs and fuzzy logic for rewards functions to evaluate an action taken for a certain state. The simulation results show that the proposed appliances scheduling approach can smooth the power consumption profile and minimise the electricity cost while considering user’s preferences, user’s feedbacks on each action taken and his/her preference settings. A user-interface is developed in MATLAB/Simulink for the Home Energy Management System (HEMS) to demonstrate the proposed DR scheme. The simulation tool includes features such as smart appliances, electricity pricing signals, smart meters, solar photovoltaic generation, battery energy storage, electric vehicle and grid supply.Peer reviewe

    Design and Implementation of Wireless Smart Home Energy Management System Using Rule-Based Controller

    Get PDF
    Most residential units still rely on conventional energy supplied by utilities despite the continuous growth of renewable energy resources, such as solar and wind energy systems in power distribution networks. Utilities often use time-of-use energy pricing, which increases the interest of energy consumers, such as those in commercial and residential buildings, in reducing their energy usage. Thus, this work demonstrates the design and implementation of a home energy management (HEM) system that can automatically control home appliances to reduce daily energy and electricity bill. The system consists of multiple smart sockets that can read the power consumption of an attached appliance and actuate its on/off commands. It also consists of several other supporting instruments that provide information to the main controller. The smart sockets and supporting instruments in the system wirelessly provide the necessary data to a central controller. Then, the system analyzes the data gathered from these devices to generate control commands that operate the devices attached to the smart sockets. Control actions rely on a developed online rule-based HEM scheme. The rules of the algorithm are designed such that the lifestyle of the user is preserved while the energy consumption and daily energy cost of the controlled appliances are reduced. Experimental results show that the central controller can effectively receive data and control multiple devices from up to 18 m away without loss of data on the basis of a scheduled user program code. Moreover, online adaptation of the HEM scheme confirms significant reductions in the total daily energy consumption and daily electricity bill of 23.5 kWh and $2.898, respectively. Therefore, the proposed HEM system can be remarkably useful for home owners with high daily energy consumption

    A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock

    Get PDF
    The construction industry has witnessed an increase in the use of digital tools and smart solutions, particularly in the realm of building energy automation. While realising the potential benefits of smart cities, a broader scope of smart initiatives is required to support the transition from smart buildings towards smart neighbourhoods, which are considered critical urban development units. To support the interplay of smart solutions between buildings and neighbourhoods, this study aimed to collect and review all the smart solutions presented in existing scientific articles, the technical literature, and realised European projects. These solutions were classified into two main sections, buildings and neighbourhoods, which were investigated through five domains: building-energy-related uses, renewable energy sources, water, waste, and open space management. The quantitative outcomes demonstrated the potential benefits of implementing smart solutions in areas ranging from buildings to neighbourhoods. Moreover, this research concluded that the true enhancement of energy conservation goes beyond the building’s energy components and can be genuinely achieved by integrating intelligent neighbourhood elements owing to their strong interdependencies. Future research should assess the effectiveness of these solutions in resource conservation

    Meeting the challenge of zero carbon homes : a multi-disciplinary review of the literature and assessment of key barriers and enablers

    Get PDF
    Within the built environment sector, there is an increasing pressure on professionals to consider the impact of development upon the environment. These pressures are rooted in sustainability, and particularly climate change. But what is meant by sustainability? It is a term whose meaning is often discussed, the most common definition taken from the Bruntland report as “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (World Commission on Environment and Development, 1987). In the built environment, the sustainability issues within the environment, social and economic spheres are often expressed through design considerations of energy, water and waste. Given the Stern Report’s economic and political case for action with respect to climate change (Stern, 2006) and the IPCC’s Fourth Assessment Report’s confirmation of the urgency of the climate change issue and it’s root causes (IPCC, 2007), the need for action to mitigate the effects of climate change is currently high on the political agenda. Excess in carbon dioxide concentrations over the natural level have been attributed to anthropogenic sources, most particularly the burning of carbon-based fossil fuels. Over 40% of Europe’s energy and 40% of Europe’s carbon dioxide emissions arise from use of energy in buildings. Energy use in buildings is primarily for space heating, water heating, lighting and appliance use. Professionals in the built environment can therefore play a significant role in meeting targets for mitigating the effects of climate change. The UK Government recently published the Code for Sustainable Homes (DCLG, 2006). Within this is the objective of development of zero carbon domestic new build dwellings by 2016. It is the domestic zero carbon homes agenda which is the focus of this report. The report is the culmination of a research project, funded by Northumbria University, and conducted from February 2008 to July 2008, involving researchers from the Sustainable Cities Research Institute (within the School of the Built Environment) and academics, also from within the School. The aim of the project was to examine, in a systematic and holistic way, the critical issues, drivers and barriers to building and adapting houses to meet zero carbon targets. The project involved a wide range of subject specialisms within the built environment and took a multi-disciplinary approach. Practitioner contribution was enabled through a workshop. The focus of this work was to review the academic literature on the built environment sector and its capabilities to meet zero carbon housing targets. It was not possible to undertake a detailed review of energy efficiency or micro-generation technologies, the focus of the research was instead in four focussed areas: policy, behaviour, supply chain and technology.What follows is the key findings of the review work undertaken. Chapter One presents the findings of the policy and regulation review. In Chapter Two the review of behavioural aspects of energy use in buildings is presented. Chapter Three presents the findings of the review of supply chain issues. Chapter Four presents the findings of the technology review, which focuses on phase change materials. A summary of the key barriers and enablers, and areas for future research work, concludes this report in Chapter Five. Research is always a work in progress, and therefore comments on this document are most welcome, as are offers of collaboration towards solutions. The School of the Built Environment at Northumbria University strives to embed its research in practical applications and solutions to the need for a low carbon economy

    Prioritizing Smart System Management Of Energy-Related Occupant Behaviors In Code Compliant And High Performance Single-Family Homes In North Carolina

    Get PDF
    While residential building practices over the last couple of decades have been improving in the areas of technical performance and energy efficiency, much less attention has been focused on homeowner lifestyle and behavior. These neglected factors can have a significant impact on home energy performance, and may be more pronounced when green building practices are employed. This study establishes a method for systematically prioritizing management of occupant behaviors that impact energy consumption in a home. It also allows further differentiation regarding which behaviors are most applicable to manage using smart home automation technologies. The tables developed in this paper summarize characteristics of energy-related occupant behaviors. They are user-friendly enough to be utilized by homeowners to assess potential home improvement options. The methodology used to establish characteristics for individual behaviors is laid out in a modular and transparent fashion, which allows members of the building industry to replace any data they wish with their own values. Furthermore, other behaviors of interest can be easily evaluated using this methodology and added to the table using the same system. In this manner, results of this study can be used as an adaptable and continuously growing tool for both homeowners and industry professionals
    corecore