2,855 research outputs found

    A genetic algorithm for the design of a fuzzy controller for active queue management

    Get PDF
    Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented

    Analysis of Error Control and Congestion Control Protocols

    Get PDF
    This thesis presents an analysis of a class of error control and congestion control protocols used in computer networks. We address two kinds of packet errors: (a) independent errors and (b) congestion-dependent errors. Our performance measure is the expected time and the standard deviation of the time to transmit a large message, consisting of N packets. The analysis of error control protocols. Assuming independent packet errors gives an insight on how the error control protocols should really work if buffer overflows are minimal. Some pertinent results on the performance of go-back-n, selective repeat, blast with full retransmission on error (BFRE) and a variant of BFRE, the Optimal BFRE that we propose, are obtained. We then analyze error control protocols in the presence of congestion-dependent errors. We study the selective repeat and go-back-n protocols and find that irrespective of retransmission strategy, the expected time as well as the standard deviation of the time to transmit N packets increases sharply the face of heavy congestion. However, if the congestion level is low, the two retransmission strategies perform similarly. We conclude that congestion control is a far more important issue when errors are caused by congestion. We next study the performance of a queue with dynamically changing input rates that are based on implicit or explicit feedback. This is motivated by recent proposals for adaptive congestion control algorithms where the sender\u27s window size is adjusted based on perceived congestion level of a bottleneck node. We develop a Fokker-Planck approximation for a simplified system; yet it is powerful enough to answer the important questions regarding stability, convergence (or oscillations), fairness and the significant effect that delayed feedback plays on performance. Specifically, we find that, in the absence of feedback delay, a linear increase/exponential decrease rate control algorithm is provably stable and fair. Delayed feedback, however, introduces cyclic behavior. This last result not only concurs with some recent simulation studies, it also expounds quantitatively on the real causes behind them

    Control of transport dynamics in overlay networks

    Get PDF
    Transport control is an important factor in the performance of Internet protocols, particularly in the next generation network applications involving computational steering, interactive visualization, instrument control, and transfer of large data sets. The widely deployed Transport Control Protocol is inadequate for these tasks due to its performance drawbacks. The purpose of this dissertation is to conduct a rigorous analytical study on the design and performance of transport protocols, and systematically develop a new class of protocols to overcome the limitations of current methods. Various sources of randomness exist in network performance measurements due to the stochastic nature of network traffic. We propose a new class of transport protocols that explicitly accounts for the randomness based on dynamic stochastic approximation methods. These protocols use congestion window and idle time to dynamically control the source rate to achieve transport objectives. We conduct statistical analyses to determine the main effects of these two control parameters and their interaction effects. The application of stochastic approximation methods enables us to show the analytical stability of the transport protocols and avoid pre-selecting the flow and congestion control parameters. These new protocols are successfully applied to transport control for both goodput stabilization and maximization. The experimental results show the superior performance compared to current methods particularly for Internet applications. To effectively deploy these protocols over the Internet, we develop an overlay network, which resides at the application level to provide data transmission service using User Datagram Protocol. The overlay network, together with the new protocols based on User Datagram Protocol, provides an effective environment for implementing transport control using application-level modules. We also study problems in overlay networks such as path bandwidth estimation and multiple quickest path computation. In wireless networks, most packet losses are caused by physical signal losses and do not necessarily indicate network congestion. Furthermore, the physical link connectivity in ad-hoc networks deployed in unstructured areas is unpredictable. We develop the Connectivity-Through-Time protocols that exploit the node movements to deliver data under dynamic connectivity. We integrate this protocol into overlay networks and present experimental results using network to support a team of mobile robots

    Supervisory Wireless Control for Critical Industrial Applications

    Get PDF

    Reliable Packet Streams with Multipath Network Coding

    Get PDF
    With increasing computational capabilities and advances in robotics, technology is at the verge of the next industrial revolution. An growing number of tasks can be performed by artificial intelligence and agile robots. This impacts almost every part of the economy, including agriculture, transportation, industrial manufacturing and even social interactions. In all applications of automated machines, communication is a critical component to enable cooperation between machines and exchange of sensor and control signals. The mobility and scale at which these automated machines are deployed also challenges todays communication systems. These complex cyber-physical systems consisting of up to hundreds of mobile machines require highly reliable connectivity to operate safely and efficiently. Current automation systems use wired communication to guarantee low latency connectivity. But wired connections cannot be used to connect mobile robots and are also problematic to deploy at scale. Therefore, wireless connectivity is a necessity. On the other hand, it is subject to many external influences and cannot reach the same level of reliability as the wired communication systems. This thesis aims to address this problem by proposing methods to combine multiple unreliable wireless connections to a stable channel. The foundation for this work is Caterpillar Random Linear Network Coding (CRLNC), a new variant of network code designed to achieve low latency. CRLNC performs similar to block codes in recovery of lost packets, but with a significantly decreased latency. CRLNC with Feedback (CRLNC-FB) integrates a Selective-Repeat ARQ (SR-ARQ) to optimize the tradeoff between delay and throughput of reliable communication. The proposed protocol allows to slightly increase the overhead to reduce the packet delay at the receiver. With CRLNC, delay can be reduced by more than 50 % with only a 10 % reduction in throughput. Finally, CRLNC is combined with a statistical multipath scheduler to optimize the reliability and service availability in wireless network with multiple unreliable paths. This multipath CRLNC scheme improves the reliability of a fixed-rate packet stream by 10 % in a system model based on real-world measurements of LTE and WiFi. All the proposed protocols have been implemented in the software library NCKernel. With NCKernel, these protocols could be evaluated in simulated and emulated networks, and were also deployed in several real-world testbeds and demonstrators.:Abstract 2 Acknowledgements 6 1 Introduction 7 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Use Cases and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Opportunities of Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 State of the Art of Multipath Communication 19 2.1 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Data Link Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Network Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Application Layer and Session Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 NCKernel: Network Coding Protocol Framework 27 3.1 Theory that matters! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 Socket Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 En-/Re-/Decoder API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.4 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.5 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Low-Latency Network Coding 35 4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Random Linear Network Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Low Latency Network Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 CRLNC: Caterpillar Random Linear Network Coding . . . . . . . . . . . . . . . . . . 38 4.4.1 Encoding and Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5.3 Packet Loss Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.5.4 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.5 Window Size Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 Delay-Throughput Tradeoff 55 5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Network Coding with ARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 CRLNC-FB: CRLNC with Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.1 Encoding and Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.2 Decoding and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.3 Retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4.3 Systematic Retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4.4 Coded Packet Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.5 Comparison with other Protocols . . . . . . . . . . . . . . . . . . . . . . . . 67 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6 Multipath for Reliable Low-Latency Packet Streams 73 6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.1 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.3 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.4 Reliability Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.4 Multipath CRLNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.4.1 Window Size for Heterogeneous Paths . . . . . . . . . . . . . . . . . . . . . 77 6.4.2 Packet Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5.2 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7 Conclusion 94 7.1 Results and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.2 Future Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Acronyms 99 Publications 101 Bibliography 10

    GA-PSO-Optimized Neural-Based Control Scheme for Adaptive Congestion Control to Improve Performance in Multimedia Applications

    Full text link
    Active queue control aims to improve the overall communication network throughput while providing lower delay and small packet loss rate. The basic idea is to actively trigger packet dropping (or marking provided by explicit congestion notification (ECN)) before buffer overflow. In this paper, two artificial neural networks (ANN)-based control schemes are proposed for adaptive queue control in TCP communication networks. The structure of these controllers is optimized using genetic algorithm (GA) and the output weights of ANNs are optimized using particle swarm optimization (PSO) algorithm. The controllers are radial bias function (RBF)-based, but to improve the robustness of RBF controller, an error-integral term is added to RBF equation in the second scheme. Experimental results show that GA- PSO-optimized improved RBF (I-RBF) model controls network congestion effectively in terms of link utilization with a low packet loss rate and outperform Drop Tail, proportional-integral (PI), random exponential marking (REM), and adaptive random early detection (ARED) controllers.Comment: arXiv admin note: text overlap with arXiv:1711.0635
    • …
    corecore