108 research outputs found

    Optimal Sizing and Location of Shunt Capacitors in Medium Voltage Underground Power Cables: A Case of Minimum Cost

    Get PDF
    This paper introduces a method to determine optimal sizing and location of shunt capacitors in medium voltage Underground Power Cables or in distribution system. To execute this method, two models of standard branch and the Newton-Raphson method are also mentioned to analyze and determine values of bus voltage and currents going through lines in whole system. The EN 50160 standard is introduced to evaluate all operational parameters and propose solutions to reduce risks. In additionally, the cost function method is introduced basing on cost of purchasing compensative device, power loss in own compensators and whole system after compensating. By considering partial derivative of cost function with respect to variables, optimal sizing and location of shunt capacitors can be determined for all buses in the system. Analyzing the system by using the Newton-Raphson method in stable mode, all operational parameters are evaluated to see the benefit of placing capacitors in some criterions: reduce the current going through all lines and increase value of bus voltage in whole system. Theory research are verified by simulation results carried out in Matlab 2016 software

    Estudio energético y diseño de una instalación fotovoltaica aislada sobre cubierta para la empresa Glazura s.r.o en la República Checa

    Get PDF
    Treball Final de Grau en Enginyeria Elèctrica. Codi: EE1045. Curs acadèmic 2013-2014The objective of this project is to do an energetic study of the Company Glazura s.r.o. where is going to be studied all the production processes and all the machines taking part of the process, and the transformers and the compressors to try to do as much improvements as possible

    Delta STATCOM with partially rated energy storage for intended provision of ancillary services

    Get PDF
    This thesis presents research on two distinct areas, where the work carried out in the first half highlights the challenges posed by the declining system inertia in the future power systems and the potential capability of the energy storage systems in bridging the gap, supporting a safe and reliable operation. A comparison of various energy storage technologies based on their specific energy, specific power, response time, life-cycle, efficiency, cost and further correlating these characteristics to the timescale requirements of frequency and RoCoF services showed that supercapacitors (SC) and Li-ion batteries present the most suitable candidates. Results of a network stability study showed that for a power system rated at 2940 MVA with a high RES contribution of 1688 MVA, equating to 57% of the energy mix, during a power imbalance of 200 MW, an ESS designed to provide emulated inertia response (EIR) in isolation required a power and energy rating of 39.54 MW and 0.0365 MWh respectively. Similarly, providing primary frequency response (PFR) on its own required a power and energy rating of 114.52 MW and 2.14 MWh respectively. ESS providing these services in isolation was not able to maintain all the frequency operating limits and similar results were also seen in the case of the recently introduced Dynamic Containment service. However, with the introduction of a combined response capability, a significantly improved performance, comparable to that of the synchronous generators was observed. In order to maintain the RoCoF and the statutory frequency limit of 0.5 Hz/s and ±0.5 Hz respectively, an ESS must be able to respond with a delay time of no more than 0.2 seconds and be able to ramp up to full response within 0.3 seconds (0.5 seconds from the start of contingency) for a frequency deviation of ±0.5 Hz. The second half of the thesis focused on investigating the current state-of-the-art power conversion system topologies, with the objective of identifying a suitable topology for interfacing ESSs to the grid at MV level. A delta-connected Modular Multilevel STATCOM with partially rated storage (PRS-STATCOM) is proposed, capable of providing both reactive and active power support. The purpose is to provide short-term energy storage enabled grid support services such as inertial and frequency response, either alongside or temporarily instead of standard STATCOM voltage support. The topology proposed here contains two types of sub-modules (SM) in each phase-leg: standard sub-modules (STD-SMs) and energy storage element sub-modules (ESE-SMs) with a DC-DC interface converter between the SM capacitor and the ESE. A control structure has been developed that allows energy transfer between the SM capacitor and the ESE, resulting in an active power exchange between the converter and the grid. A 3rd harmonic current injection into the converter waveforms was used to increase the amount of power that can be extracted from the ESE-SMs and so reduce the required ESE-SMs fraction in each phase-leg. Simulation results demonstrate that for three selected active power ratings, 1 pu, 2/3 pu, & 1/3 pu, the fraction of SMs that need to be converted to ESE-SMs are only 69%, 59% & 38%. Thus, the proposed topology is effective in adding real power capability to a STATCOM without a large increase in equipment cost. Furthermore, modifying the initially proposed topology with the use of Silicon Carbide (SiC) switching devices and interleaved DC-DC interface converter with inverse coupled inductors resulted in similar efficiencies when operated in STATCOM mode.Open Acces

    Electromagnetic fast-transients in LV networks with ubiquitous small-scale embedded generation

    Get PDF
    Small-scale embedded generation projects rated below 16A per phase are being integrated into low-voltage distribution networks in ever increasing numbers. Seen from the network operator's perspective as little more than negative load, the commissioning of such generators is subject to compliance with the Fit and Forget connection requirements of ENA Engineering Recommendation G83/1. This thesis has sought to quantify the electromagnetic switching transient implications of integrating very large volumes of embedded generation into the UK's low-voltage supply networks. Laboratory testing of a converter-interfaced PV source has been undertaken to characterise typical switching transient waveshapes, and equivalent representative source models have been constructed in EMTP-ATP. A detailed frequency-dependent travelling wave equivalent of the DNO-approved Generic UK LV Distribution network model has been developed and, by means of extensive statistical simulation studies, used to quantify the cumulative impact of geographically localised generators switching in response to common network conditions. It is found that the magnitude of generator-induced voltage and current transients is dependent on the number of concurrently switched generators, and on their relative locations within the network. A theoretical maximum overvoltage of 1.72pu is predicted at customer nodes remote from the LV transformer terminals, for a scenario in which all households have installed embedded generation. Latent diversity in switch pole closing and inrush inception times is found to reduce predicted peak transient voltages to around 25-40% of their theoretical maxima.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Power Quality in Electrified Transportation Systems

    Get PDF
    "Power Quality in Electrified Transportation Systems" has covered interesting horizontal topics over diversified transportation technologies, ranging from railways to electric vehicles and ships. Although the attention is chiefly focused on typical railway issues such as harmonics, resonances and reactive power flow compensation, the integration of electric vehicles plays a significant role. The book is completed by some additional significant contributions, focusing on the interpretation of Power Quality phenomena propagation in railways using the fundamentals of electromagnetic theory and on electric ships in the light of the latest standardization efforts

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources

    Matlab

    Get PDF
    This book is a collection of 19 excellent works presenting different applications of several MATLAB tools that can be used for educational, scientific and engineering purposes. Chapters include tips and tricks for programming and developing Graphical User Interfaces (GUIs), power system analysis, control systems design, system modelling and simulations, parallel processing, optimization, signal and image processing, finite different solutions, geosciences and portfolio insurance. Thus, readers from a range of professional fields will benefit from its content

    Optimization Methods Applied to Power Systems Ⅱ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems
    corecore