11 research outputs found

    Runtime-adaptive generalized task parallelism

    Get PDF
    Multi core systems are ubiquitous nowadays and their number is ever increasing. And while, limited by physical constraints, the computational power of the individual cores has been stagnating or even declining for years, a solution to effectively utilize the computational power that comes with the additional cores is yet to be found. Existing approaches to automatic parallelization are often highly specialized to exploit the parallelism of specific program patterns, and thus to parallelize a small subset of programs only. In addition, frequently used invasive runtime systems prohibit the combination of different approaches, which impedes the practicality of automatic parallelization. In the following thesis, we show that specializing to narrowly defined program patterns is not necessary to efficiently parallelize applications coming from different domains. We develop a generalizing approach to parallelization, which, driven by an underlying mathematical optimization problem, is able to make qualified parallelization decisions taking into account the involved runtime overhead. In combination with a specializing, adaptive runtime system the approach is able to match and even exceed the performance results achieved by specialized approaches.Mehrkernsysteme sind heutzutage allgegenwärtig und finden täglich weitere Verbreitung. Und während, limitiert durch die Grenzen des physikalisch Machbaren, die Rechenkraft der einzelnen Kerne bereits seit Jahren stagniert oder gar sinkt, existiert bis heute keine zufriedenstellende Lösung zur effektiven Ausnutzung der gebotenen Rechenkraft, die mit der steigenden Anzahl an Kernen einhergeht. Existierende Ansätze der automatischen Parallelisierung sind häufig hoch spezialisiert auf die Ausnutzung bestimmter Programm-Muster, und somit auf die Parallelisierung weniger Programmteile. Hinzu kommt, dass häufig verwendete invasive Laufzeitsysteme die Kombination mehrerer Parallelisierungs-Ansätze verhindern, was der Praxistauglichkeit und Reichweite automatischer Ansätze im Wege steht. In der Ihnen vorliegenden Arbeit zeigen wir, dass die Spezialisierung auf eng definierte Programmuster nicht notwendig ist, um Parallelität in Programmen verschiedener Domänen effizient auszunutzen. Wir entwickeln einen generalisierenden Ansatz der Parallelisierung, der, getrieben von einem mathematischen Optimierungsproblem, in der Lage ist, fundierte Parallelisierungsentscheidungen unter Berücksichtigung relevanter Kosten zu treffen. In Kombination mit einem spezialisierenden und adaptiven Laufzeitsystem ist der entwickelte Ansatz in der Lage, mit den Ergebnissen spezialisierter Ansätze mitzuhalten, oder diese gar zu übertreffen.Part of the work presented in this thesis was performed in the context of the SoftwareCluster project EMERGENT (http://www.software-cluster.org). It was funded by the German Federal Ministry of Education and Research (BMBF) under grant no. “01IC10S01”. Later work has been supported, also by the German Federal Ministry of Education and Research (BMBF), through funding for the Center for IT-Security, Privacy and Accountability (CISPA) under grant no. “16KIS0344”

    Removing and restoring control flow with the Value State Dependence Graph

    Get PDF
    This thesis studies the practicality of compiling with only data flow information. Specifically, we focus on the challenges that arise when using the Value State Dependence Graph (VSDG) as an intermediate representation (IR). We perform a detailed survey of IRs in the literature in order to discover trends over time, and we classify them by their features in a taxonomy. We see how the VSDG fits into the IR landscape, and look at the divide between academia and the 'real world' in terms of compiler technology. Since most data flow IRs cannot be constructed for irreducible programs, we perform an empirical study of irreducibility in current versions of open source software, and then compare them with older versions of the same software. We also study machine-generated C code from a variety of different software tools. We show that irreducibility is no longer a problem, and is becoming less so with time. We then address the problem of constructing the VSDG. Since previous approaches in the literature have been poorly documented or ignored altogether, we give our approach to constructing the VSDG from a common IR: the Control Flow Graph. We show how our approach is independent of the source and target language, how it is able to handle unstructured control flow, and how it is able to transform irreducible programs on the fly. Once the VSDG is constructed, we implement Lawrence's proceduralisation algorithm in order to encode an evaluation strategy whilst translating the program into a parallel representation: the Program Dependence Graph. From here, we implement scheduling and then code generation using the LLVM compiler. We compare our compiler framework against several existing compilers, and show how removing control flow with the VSDG and then restoring it later can produce high quality code. We also examine specific situations where the VSDG can put pressure on existing code generators. Our results show that the VSDG represents a radically different, yet practical, approach to compilation

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    High-level synthesis of dataflow programs for heterogeneous platforms:design flow tools and design space exploration

    Get PDF
    The growing complexity of digital signal processing applications implemented in programmable logic and embedded processors make a compelling case the use of high-level methodologies for their design and implementation. Past research has shown that for complex systems, raising the level of abstraction does not necessarily come at a cost in terms of performance or resource requirements. As a matter of fact, high-level synthesis tools supporting such a high abstraction often rival and on occasion improve low-level design. In spite of these successes, high-level synthesis still relies on programs being written with the target and often the synthesis process, in mind. In other words, imperative languages such as C or C++, most used languages for high-level synthesis, are either modified or a constrained subset is used to make parallelism explicit. In addition, a proper behavioral description that permits the unification for hardware and software design is still an elusive goal for heterogeneous platforms. A promising behavioral description capable of expressing both sequential and parallel application is RVC-CAL. RVC-CAL is a dataflow programming language that permits design abstraction, modularity, and portability. The objective of this thesis is to provide a high-level synthesis solution for RVC-CAL dataflow programs and provide an RVC-CAL design flow for heterogeneous platforms. The main contributions of this thesis are: a high-level synthesis infrastructure that supports the full specification of RVC-CAL, an action selection strategy for supporting parallel read and writes of list of tokens in hardware synthesis, a dynamic fine-grain profiling for synthesized dataflow programs, an iterative design space exploration framework that permits the performance estimation, analysis, and optimization of heterogeneous platforms, and finally a clock gating strategy that reduces the dynamic power consumption. Experimental results on all stages of the provided design flow, demonstrate the capabilities of the tools for high-level synthesis, software hardware Co-Design, design space exploration, and power optimization for reconfigurable hardware. Consequently, this work proves the viability of complex systems design and implementation using dataflow programming, not only for system-level simulation but real heterogeneous implementations

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore