20,928 research outputs found

    Design and Optimal Configuration of Full-Duplex MAC Protocol for Cognitive Radio Networks Considering Self-Interference

    Get PDF
    In this paper, we propose an adaptive Medium Access Control (MAC) protocol for full-duplex (FD) cognitive radio networks in which FD secondary users (SUs) perform channel contention followed by concurrent spectrum sensing and transmission, and transmission only with maximum power in two different stages (called the FD sensing and transmission stages, respectively) in each contention and access cycle. The proposed FD cognitive MAC (FDC-MAC) protocol does not require synchronization among SUs and it efficiently utilizes the spectrum and mitigates the self-interference in the FD transceiver. We then develop a mathematical model to analyze the throughput performance of the FDC-MAC protocol where both half-duplex (HD) transmission (HDTx) and FD transmission (FDTx) modes are considered in the transmission stage. Then, we study the FDC-MAC configuration optimization through adaptively controlling the spectrum sensing duration and transmit power level in the FD sensing stage where we prove that there exists optimal sensing time and transmit power to achieve the maximum throughput and we develop an algorithm to configure the proposed FDC-MAC protocol. Extensive numerical results are presented to illustrate the characteristic of the optimal FDC-MAC configuration and the impacts of protocol parameters and the self-interference cancellation quality on the throughput performance. Moreover, we demonstrate the significant throughput gains of the FDC-MAC protocol with respect to existing half-duplex MAC (HD MAC) and single-stage FD MAC protocols.Comment: To Appear, IEEE Access, 201

    Joint Optimization of Detection Threshold and Resource Allocation in Infrastructure-based Multi-band Cognitive Radio Networks

    Get PDF
    [EN] Consider an infrastructure-based multi-band cognitive radio network (CRN) where secondary users (SUs) opportunistically access a set of sub-carriers when sensed as idle. The carrier sensing threshold which affects the access opportunities of SUs is conventionally regarded as static and treated independently from the resource allocation in the model. In this article, we study jointly the optimization of detection threshold and resource allocation with the goal of maximizing the total downlink capacity of SUs in such CRNs. The optimization problem is formulated considering three sets of variables, i.e., detection threshold, sub-carrier assignment and power allocation, with constraints on the PUs¿ rate loss and the power budget of the CR base station. Two schemes, referred to as offline and online algorithms respectively, are proposed to solve the optimization problem. While the offline algorithm finds the global optimal solution with high complexity, the online algorithm provides a close-to-optimal solution with much lower complexity and realtime capability. The performance of the proposed schemes is evaluated by extensive simulations and compared with the conventional static threshold selection algorithm specified in the IEEE 802.22 standard.This work is supported by the EU FP7 S2EuNet project (247083), the National Nature Science Foundation of China (NSF61121001), Program for New Century Excellent Talents in University (NCET) and the Spanish Ministry of Education and Science under project (TIN2008-06739-C04-02).Shi, C.; Wang, Y.; Wang, T.; Zhang, P.; Martínez Bauset, J.; Li, FY. (2012). Joint Optimization of Detection Threshold and Resource Allocation in Infrastructure-based Multi-band Cognitive Radio Networks. EURASIP Journal on Wireless Communications and Networking. 2012(334):1-16. https://doi.org/10.1186/1687-1499-2012-334S1162012334Wang B, Liu K: Advances in cognitive radio networks: a survey. IEEE J. Sel. Top. Signal Process 2011, 5: 5-23.Akyildiz I, Lee W, Vuran M, Mohanty S: Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Netw. 2006, 50(13):2127-2159. 10.1016/j.comnet.2006.05.001Haykin S: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun 2005, 23(2):201-220.Zhao Q, Sadler B: A survey of dynamic spectrum access. IEEE Signal Process. Mag 2007, 24(3):79-89.Nguyen M, Lee H: Effective scheduling in infrastructure-based cognitive radio network. IEEE Trans. Mobile Comput 2011, 10(6):853-867.Almalfouh S, Stuber G: Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Trans. Veh. Technol 2011, 60(4):1699-1713.Kang X, Liang Y, Nallanathan A, Garg H, Zhang R: Optimal power allocation for fading channels in cognitive radio networks: ergodic capacity and outage capacity. IEEE Trans. Wirel. Commun 2009, 8(2):940-950.Bansal G, Hossain M, Bhargava V: Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Trans. Wirel. Commun 2008, 7(11):4710-4718.Yucek T, Arslan H: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor 2009, 11: 116-130.Cordeiro C, Ghosh M, Cavalcanti D, Challapali K: Spectrum sensing for dynamic spectrum access of TV bands. In Proceedings of the 2nd Cognitive Radio Oriented Wireless Networks and Communications (CrownCom’07). (Orlando, FL, USA, 1–3 Aug 2007);Chong J, Sung D, Sung Y: Cross-layer performance analysis for CSMA/CA protocols: impact of imperfect sensing. IEEE Trans. Veh. Technol 2010, 59(3):1100-1108.Seol D, Lim H, Im G: Cooperative spectrum sensing with dynamic threshold adaptation. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM’09). Honolulu, HI, USA; 1.Liang Y, Zeng Y, Peh E, Hoang A: Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wirel. Commun 2008, 7(4):1326-1337.Kang X, Liang Y, Garg H, Zhang L: Sensing-based spectrum sharing in cognitive radio networks. IEEE Trans. Veh. Technol 2009, 58(8):4649-4654.Choi H, Jang K, Cheong Y: Adaptive sensing threshold control based on transmission power in cognitive radio systems. In Proceedings of the 3rd Cognitive Radio Oriented Wireless Networks and Communications (CrownCom’08). (Singapore, 15–17 May 2008), pp.1–6Gorcin A, Qaraqe K, Celebi H, Arslan H: An adaptive threshold method for spectrum sensing in multi-channel cognitive radio networks. In Proceedings of the IEEE International Conference on Telecommunications (ICT’10). Doha, Qatar; 4.Foukalas F, Mathiopoulos P, Karetsos G: Joint optimal power allocation and sensing threshold selection for SU’s capacity maximisation in SS CRN. Electron. Lett 2010, 46(20):1406-1407. 10.1049/el.2010.1355Jia P, Vu M, Le-Ngoc T, Hong S, Tarokh V: Capacity-and bayesian-based cognitive sensing with location side information. IEEE J. Sel. Areas Commun 2011, 29(2):276-289.Wang R, Lau V, Lv L, Chen B: Joint cross-layer scheduling and spectrum sensing for OFDMA cognitive radio systems. IEEE Trans. Wirel. Commun 2009, 8(5):2410-2416.Kang X, Garg H, Liang Y, Zhang R: Optimal power allocation for OFDM-based cognitive radio with new primary transmission protection criteria. IEEE Trans. Wirel. Commun 2010, 9(6):2066-2075.Quan Z, Cui S, Sayed A, Poor H: Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans. Signal Process 2009, 57(3):1128-1140.López-Benítez M, Casadevall F: An overview of spectrum occupancy models for cognitive radio networks. In International IFIP TC 6 Workshops: PE-CRN, NC-Pro, WCNS , and SUNSET. Valencia, Spain; 13 May 2011.Pla V, Vidal J, Martinez-Bause J, Guijarro L: Modeling and characterization of spectrum white spaces for underlay cognitive radio networks. In Proceedings of IEEE International Conference on Communications (ICC’10). Cape Town, South Africa; 23.Yu W, Lui R: Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Trans. Commun 2006, 54(7):1310-1322.Boyd S, Vandenberghe L: Convex Optimization. Cambridge University Press, Cambridge; 2004.Jang J, Lee K: Transmit power adaptation for multiuser OFDM systems. IEEE J. Sel. Areas Commun 2003, 21(2):171-178. 10.1109/JSAC.2002.807348Luenberger D, Ye Y: Linear and Nonlinear Programming. Springer Verlag, Stanford; 2008.Barbarossa S, Sardellitti S, Scutari G: Joint optimization of detection thresholds and power allocation for opportunistic access in multicarrier cognitive radio networks. In Proceedings of 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’09). Aruba, Netherlands; 13

    CYCLOSTATIONARY FEATURES OF PAL TV AND WIRELESS MICROPHONE FOR COGNITIVE RADIO APPLICATIONS

    Get PDF
    Frequency spectrum being a scarce resource in communication system design, spectrum sharing seems to be the solution to an optimal utilization of frequency spectrum. The traditional fixed frequency allocation is not suitable for futuristic networks that demand more and more spectrum for new wireless services. Cognitive radio is a new emerging technology based on spectrum sharing concept. Spectrum sensing is a vital task in this emerging technology by which it is able to scan the frequency spectrum to identify the unused spectrum bands and utilize them. In this thesis, we discuss spectrum sensing in the context of IEEE 802.22 Wireless Regional Area Network (WRAN). In order to do so, we develop the co-existence scenario with three cases according to geographical positions of primary services and secondary service. In WRAN application, the SUs utilize the unused channel in TV spectrum, which means that the primary users are TV service and other FCC part 74 low power licensed devices. We focus on special case of Analog TV-PAL service and wireless microphone service as part 74 devices. Before discussing the spectrum sensing technique, we propose architecture for sensing receiver. The concept of noise uncertainty is also introduced in this context. The cyclostationarity theory is introduced and we explain the motivation behind using the theory for spectrum sensing and the reason that makes the cyclostationary features detector a powerful detection technique in cognitive radio. We obtain the cyclostationary features of these primary signals using spectral correlation function. Based on these features, we develop two algorithms for spectrum sensing and their performances are evaluated in comparison with energy detector which is considered as the standard simple detector. Given that the cyclostationary features are unique for a particular signal; these features can be used for signals classification. In our case, we use those features to decide if the licensed channel is used by TV service or wireless microphone service. This provides additional information for spectrum management and power control. Implementation issue is very important in cognitive radio generally and spectrum sensing specially, hence we discuss the implementation of cyclostationary features detector and compare its complexity with that of energy detector

    Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage

    Full text link
    With the rapid growth of demand for ever-increasing data rate, spectrum resources have become more and more scarce. As a promising technique to increase the efficiency of the spectrum utilization, cognitive radio (CR) technique has the great potential to meet such a requirement by allowing un-licensed users to coexist in licensed bands. In conventional CR systems, the spectrum sensing is performed at the beginning of each time slot before the data transmission. This unfortunately results in two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. To tackle these problems, in this paper we present a new design paradigm for future CR by exploring the full-duplex (FD) techniques to achieve the simultaneous spectrum sensing and data transmission. With FD radios equipped at the secondary users (SUs), SUs can simultaneously sense and access the vacant spectrum, and thus, significantly improve sensing performances and meanwhile increase data transmission efficiency. The aim of this article is to transform the promising conceptual framework into the practical wireless network design by addressing a diverse set of challenges such as protocol design and theoretical analysis. Several application scenarios with FD enabled CR are elaborated, and key open research directions and novel algorithms in these systems are discussed
    • …
    corecore