554 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Optimizing cooperative cognitive radio networks with opportunistic access

    Get PDF
    Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources

    Machine learning techniques applied to multiband spectrum sensing in cognitive radios

    Get PDF
    This research received funding of the Mexican National Council of Science and Technology (CONACYT), Grant (no. 490180). Also, this work was supported by the Program for Professional Development Teacher (PRODEP).In this work, three specific machine learning techniques (neural networks, expectation maximization and k-means) are applied to a multiband spectrum sensing technique for cognitive radios. All of them have been used as a classifier using the approximation coefficients from a Multiresolution Analysis in order to detect presence of one or multiple primary users in a wideband spectrum. Methods were tested on simulated and real signals showing a good performance. The results presented of these three methods are effective options for detecting primary user transmission on the multiband spectrum. These methodologies work for 99% of cases under simulated signals of SNR higher than 0 dB and are feasible in the case of real signalsPeer ReviewedPostprint (published version

    Analytical Studies of Fragmented-Spectrum Multi-Level OFDM-CDMA Technique in Cognitive Radio Networks

    Full text link
    In this paper, we present a multi-user resource allocation framework using fragmented-spectrum synchronous OFDM-CDMA modulation over a frequency-selective fading channel. In particular, given pre-existing communications in the spectrum where the system is operating, a channel sensing and estimation method is used to obtain information of subcarrier availability. Given this information, some real-valued multi-level orthogonal codes, which are orthogonal codes with values of {±1,±2,±3,±4,...}\{\pm1,\pm2,\pm3,\pm4, ... \}, are provided for emerging new users, i.e., cognitive radio users. Additionally, we have obtained a closed form expression for bit error rate of cognitive radio receivers in terms of detection probability of primary users, CR users' sensing time and CR users' signal to noise ratio. Moreover, simulation results obtained in this paper indicate the precision with which the analytical results have been obtained in modeling the aforementioned system.Comment: 6 pages and 3 figure

    Error Rate Analysis of Cognitive Radio Transmissions with Imperfect Channel Sensing

    Get PDF
    This paper studies the symbol error rate performance of cognitive radio transmissions in the presence of imperfect sensing decisions. Two different transmission schemes, namely sensing-based spectrum sharing (SSS) and opportunistic spectrum access (OSA), are considered. In both schemes, secondary users first perform channel sensing, albeit with possible errors. In SSS, depending on the sensing decisions, they adapt the transmission power level and coexist with primary users in the channel. On the other hand, in OSA, secondary users are allowed to transmit only when the primary user activity is not detected. Initially, for both transmission schemes, general formulations for the optimal decision rule and error probabilities are provided for arbitrary modulation schemes under the assumptions that the receiver is equipped with the sensing decision and perfect knowledge of the channel fading, and the primary user's received faded signals at the secondary receiver has a Gaussian mixture distribution. Subsequently, the general approach is specialized to rectangular quadrature amplitude modulation (QAM). More specifically, optimal decision rule is characterized for rectangular QAM, and closed-form expressions for the average symbol error probability attained with the optimal detector are derived under both transmit power and interference constraints. The effects of imperfect channel sensing decisions, interference from the primary user and its Gaussian mixture model, and the transmit power and interference constraints on the error rate performance of cognitive transmissions are analyzed
    corecore