1,301 research outputs found

    The integration of pumped hydro storage systems into PV microgrids in rural areas

    Get PDF
    Photovoltaic (PV) systems are popular in rural areas because they provide low cost and clean electricity for homes and irrigation systems. The primary challenge of PV systems is their intermittent nature. The typical solution is storing energy in batteries; however, they are expensive and possess a short lifespan. This research proposes a new type of pumped hydro storage (PHS) which can be implemented as an alternative to batteries. The components of the system are modelled to consider losses of the system accurately. The mathematic model developed in this project assists the management system to make more efficient decisions. The proposed storage is integrated into a farmhouse that has a PV pumping system where economic aspects of implementing the proposed storage is investigated. The integration of the proposed PHS into a microgrid needs a management system to make this system efficient and 3 cost-effective. This research proposes a multi-stage management system to schedule and control the microgrid components for optimal integration of the PHS. The designed management system is able to manage the pump, turbine, and irrigation time on real-time taking into account both present and future conditions of the microgrid. This study investigates the technical aspects of the proposed system. The PHS and the management system are tested experimentally in a setup installed at smart energy laboratory at Edith Cowan university. Data used in this project are real data collected in the laboratory in order to have a realistic analysis. Economic analysis is done in different sizes with different conditions. Results indicate that the proposed system has a short payback period and a large lifetime benefit, featuring as a cost-effective and sustainable energy storage system for use in rural areas. Video abstract: https://youtu.be/VuyEvHRY7W

    Advances in Theoretical and Computational Energy Optimization Processes

    Get PDF
    The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes

    Quasi-dynamic Load and Battery Sizing and Scheduling for Stand-Alone Solar System Using Mixed-integer Linear Programming

    Full text link
    Considering the intermittency of renewable energy systems, a sizing and scheduling model is proposed for a finite number of static electric loads. The model objective is to maximize solar energy utilization with and without storage. For the application of optimal load size selection, the energy production of a solar photovoltaic is assumed to be consumed by a finite number of discrete loads in an off-grid system using mixed-integer linear programming. Additional constraints are battery charge and discharge limitations and minimum uptime and downtime for each unit. For a certain solar power profile the model outputs optimal unit size as well as the optimal scheduling for both units and battery charge and discharge (if applicable). The impact of different solar power profiles and minimum up and down time constraints on the optimal unit and battery sizes are studied. The battery size required to achieve full solar energy utilization decreases with the number of units and with increased flexibility of the units (shorter on and off-time). A novel formulation is introduced to model quasi-dynamic units that gradually start and stop and the quasi-dynamic units increase solar energy utilization. The model can also be applied to search for the optimal number of units for a given cost function.Comment: 6 pages, 3 figures, accepted at The IEEE Conference on Control Applications (CCA

    A review of optimal operation of microgrids

    Get PDF
    The term microgrid refers to small-scale power grid that can operate autonomously or in concurrence with the area’s main electrical grid. The intermittent characteristic of DGs which defies the power quality and voltage manifests the requirement for new planning and operation approaches for microgrids. Consequently, conventional optimization methods in new power systems have been critically biased all through the previous decade. One of the main technological and inexpensive tools in this regard is the optimal generation scheduling of microgrid. As a primary optimization tool in the planning and operation fields, optimal operation has an undeniable part in the power system. This paper reviews and evaluates the optimal operation approaches mostly related to microgrids. In this work, the foremost optimal generation scheduling approaches are compared in terms of their objective functions, techniques and constraints. To conclude, a few fundamental challenges occurring from the latest optimal generation scheduling techniques in microgrids are addressed

    Management of renewable-based multi-energy microgrids in the presence of electric vehicles

    Get PDF
    This study proposes a stochastic optimisation programming for scheduling a microgrid (MG) considering multiple energy devices and the uncertain nature of renewable energy resources and parking lot‐based electric vehicles (EVs). Both thermal and electrical features of the multi‐energy system are modelled by considering combined heat and power generation, thermal energy storage, and auxiliary boilers. Also, price‐based and incentive‐based demand response (DR) programs are modelled in the proposed multi‐energy MG to manage a commercial complex including hospital, supermarket, strip mall, hotel and offices. Moreover, a linearised AC power flow is utilised to model the distribution system, including EVs. The feasibility of the proposed model is studied on a system based on real data of a commercial complex, and the integration of DR and EVs with multiple energy devices in an MG is investigated. The numerical studies show the high impact of EVs on the operation of the multi‐energy MGs.©2020 IET. This paper is a postprint of a paper submitted to and accepted for publication in IET Renewable Power Generation and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.fi=vertaisarvioitu|en=peerReviewed
    corecore