110,501 research outputs found

    Optimal scales in weighted networks

    Get PDF
    The analysis of networks characterized by links with heterogeneous intensity or weight suffers from two long-standing problems of arbitrariness. On one hand, the definitions of topological properties introduced for binary graphs can be generalized in non-unique ways to weighted networks. On the other hand, even when a definition is given, there is no natural choice of the (optimal) scale of link intensities (e.g. the money unit in economic networks). Here we show that these two seemingly independent problems can be regarded as intimately related, and propose a common solution to both. Using a formalism that we recently proposed in order to map a weighted network to an ensemble of binary graphs, we introduce an information-theoretic approach leading to the least biased generalization of binary properties to weighted networks, and at the same time fixing the optimal scale of link intensities. We illustrate our method on various social and economic networks.Comment: Accepted for presentation at SocInfo 2013, Kyoto, 25-27 November 2013 (http://www.socinfo2013.org

    Optimal Path and Minimal Spanning Trees in Random Weighted Networks

    Full text link
    We review results on the scaling of the optimal path length in random networks with weighted links or nodes. In strong disorder we find that the length of the optimal path increases dramatically compared to the known small world result for the minimum distance. For Erd\H{o}s-R\'enyi (ER) and scale free networks (SF), with parameter λ\lambda (λ>3\lambda >3), we find that the small-world nature is destroyed. We also find numerically that for weak disorder the length of the optimal path scales logaritmically with the size of the networks studied. We also review the transition between the strong and weak disorder regimes in the scaling properties of the length of the optimal path for ER and SF networks and for a general distribution of weights, and suggest that for any distribution of weigths, the distribution of optimal path lengths has a universal form which is controlled by the scaling parameter Z=ℓ∞/AZ=\ell_{\infty}/A where AA plays the role of the disorder strength, and ℓ∞\ell_{\infty} is the length of the optimal path in strong disorder. The relation for AA is derived analytically and supported by numerical simulations. We then study the minimum spanning tree (MST) and show that it is composed of percolation clusters, which we regard as "super-nodes", connected by a scale-free tree. We furthermore show that the MST can be partitioned into two distinct components. One component the {\it superhighways}, for which the nodes with high centrality dominate, corresponds to the largest cluster at the percolation threshold which is a subset of the MST. In the other component, {\it roads}, low centrality nodes dominate. We demonstrate the significance identifying the superhighways by showing that one can improve significantly the global transport by improving a very small fraction of the network.Comment: review, accepted at IJB

    Encoding dynamics for multiscale community detection: Markov time sweeping for the Map equation

    Get PDF
    The detection of community structure in networks is intimately related to finding a concise description of the network in terms of its modules. This notion has been recently exploited by the Map equation formalism (M. Rosvall and C.T. Bergstrom, PNAS, 105(4), pp.1118--1123, 2008) through an information-theoretic description of the process of coding inter- and intra-community transitions of a random walker in the network at stationarity. However, a thorough study of the relationship between the full Markov dynamics and the coding mechanism is still lacking. We show here that the original Map coding scheme, which is both block-averaged and one-step, neglects the internal structure of the communities and introduces an upper scale, the `field-of-view' limit, in the communities it can detect. As a consequence, Map is well tuned to detect clique-like communities but can lead to undesirable overpartitioning when communities are far from clique-like. We show that a signature of this behavior is a large compression gap: the Map description length is far from its ideal limit. To address this issue, we propose a simple dynamic approach that introduces time explicitly into the Map coding through the analysis of the weighted adjacency matrix of the time-dependent multistep transition matrix of the Markov process. The resulting Markov time sweeping induces a dynamical zooming across scales that can reveal (potentially multiscale) community structure above the field-of-view limit, with the relevant partitions indicated by a small compression gap.Comment: 10 pages, 6 figure

    Laplacian Dynamics and Multiscale Modular Structure in Networks

    Full text link
    Most methods proposed to uncover communities in complex networks rely on their structural properties. Here we introduce the stability of a network partition, a measure of its quality defined in terms of the statistical properties of a dynamical process taking place on the graph. The time-scale of the process acts as an intrinsic parameter that uncovers community structures at different resolutions. The stability extends and unifies standard notions for community detection: modularity and spectral partitioning can be seen as limiting cases of our dynamic measure. Similarly, recently proposed multi-resolution methods correspond to linearisations of the stability at short times. The connection between community detection and Laplacian dynamics enables us to establish dynamically motivated stability measures linked to distinct null models. We apply our method to find multi-scale partitions for different networks and show that the stability can be computed efficiently for large networks with extended versions of current algorithms.Comment: New discussions on the selection of the most significant scales and the generalisation of stability to directed network

    Distributed flow optimization and cascading effects in weighted complex networks

    Full text link
    We investigate the effect of a specific edge weighting scheme ∼(kikj)β\sim (k_i k_j)^{\beta} on distributed flow efficiency and robustness to cascading failures in scale-free networks. In particular, we analyze a simple, yet fundamental distributed flow model: current flow in random resistor networks. By the tuning of control parameter β\beta and by considering two general cases of relative node processing capabilities as well as the effect of bandwidth, we show the dependence of transport efficiency upon the correlations between the topology and weights. By studying the severity of cascades for different control parameter β\beta, we find that network resilience to cascading overloads and network throughput is optimal for the same value of β\beta over the range of node capacities and available bandwidth

    Optimal Paths in Complex Networks with Correlated Weights: The World-wide Airport Network

    Get PDF
    We study complex networks with weights, wijw_{ij}, associated with each link connecting node ii and jj. The weights are chosen to be correlated with the network topology in the form found in two real world examples, (a) the world-wide airport network, and (b) the {\it E. Coli} metabolic network. Here wij∼xij(kikj)αw_{ij} \sim x_{ij} (k_i k_j)^\alpha, where kik_i and kjk_j are the degrees of nodes ii and jj, xijx_{ij} is a random number and α\alpha represents the strength of the correlations. The case α>0\alpha > 0 represents correlation between weights and degree, while α<0\alpha < 0 represents anti-correlation and the case α=0\alpha = 0 reduces to the case of no correlations. We study the scaling of the lengths of the optimal paths, ℓopt\ell_{\rm opt}, with the system size NN in strong disorder for scale-free networks for different α\alpha. We calculate the robustness of correlated scale-free networks with different α\alpha, and find the networks with α<0\alpha < 0 to be the most robust networks when compared to the other values of α\alpha. We propose an analytical method to study percolation phenomena on networks with this kind of correlation. We compare our simulation results with the real world-wide airport network, and we find good agreement
    • …
    corecore