899 research outputs found

    Optimal Save-Then-Transmit Protocol for Energy Harvesting Wireless Transmitters

    Full text link
    In this paper, the design of a wireless communication device relying exclusively on energy harvesting is considered. Due to the inability of rechargeable energy sources to charge and discharge at the same time, a constraint we term the energy half-duplex constraint, two rechargeable energy storage devices (ESDs) are assumed so that at any given time, there is always one ESD being recharged. The energy harvesting rate is assumed to be a random variable that is constant over the time interval of interest. A save-then-transmit (ST) protocol is introduced, in which a fraction of time {\rho} (dubbed the save-ratio) is devoted exclusively to energy harvesting, with the remaining fraction 1 - {\rho} used for data transmission. The ratio of the energy obtainable from an ESD to the energy harvested is termed the energy storage efficiency, {\eta}. We address the practical case of the secondary ESD being a battery with {\eta} < 1, and the main ESD being a super-capacitor with {\eta} = 1. The optimal save-ratio that minimizes outage probability is derived, from which some useful design guidelines are drawn. In addition, we compare the outage performance of random power supply to that of constant power supply over the Rayleigh fading channel. The diversity order with random power is shown to be the same as that of constant power, but the performance gap can be large. Furthermore, we extend the proposed ST protocol to wireless networks with multiple transmitters. It is shown that the system-level outage performance is critically dependent on the relationship between the number of transmitters and the optimal save-ratio for single-channel outage minimization. Numerical results are provided to validate our proposed study.Comment: This is the longer version of a paper to appear in IEEE Transactions on Wireless Communication

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Optimization of the overall success probability of the energy harvesting cognitive wireless sensor networks

    Get PDF
    Wireless energy harvesting can improve the performance of cognitive wireless sensor networks (WSNs). This paper considers radio frequency (RF) energy harvesting from transmissions in the primary spectrum for cognitive WSNs. The overall success probability of the energy harvesting cognitive WSN depends on the transmission success probability and energy success probability. Using the tools from stochastic geometry, we show that the overall success probability can be optimized with respect to: 1) transmit power of the sensors; 2) transmit power of the primary transmitters; and 3) spatial density of the primary transmitters. In this context, an optimization algorithm is proposed to maximize the overall success probability of the WSNs. Simulation results show that the overall success probability and the throughput of the WSN can be significantly improved by optimizing the aforementioned three parameters. As RF energy harvesting can also be performed indoors, hence, our solution can be directly applied to the cognitive WSNs that are installed in smart buildings

    Joint Transmission and Energy Transfer Policies for Energy Harvesting Devices with Finite Batteries

    Full text link
    One of the main concerns in traditional Wireless Sensor Networks (WSNs) is energy efficiency. In this work, we analyze two techniques that can extend network lifetime. The first is Ambient \emph{Energy Harvesting} (EH), i.e., the capability of the devices to gather energy from the environment, whereas the second is Wireless \emph{Energy Transfer} (ET), that can be used to exchange energy among devices. We study the combination of these techniques, showing that they can be used jointly to improve the system performance. We consider a transmitter-receiver pair, showing how the ET improvement depends upon the statistics of the energy arrivals and the energy consumption of the devices. With the aim of maximizing a reward function, e.g., the average transmission rate, we find performance upper bounds with and without ET, define both online and offline optimization problems, and present results based on realistic energy arrivals in indoor and outdoor environments. We show that ET can significantly improve the system performance even when a sizable fraction of the transmitted energy is wasted and that, in some scenarios, the online approach can obtain close to optimal performance.Comment: 16 pages, 12 figure
    corecore