2,466 research outputs found

    Gossiping in chordal rings under the line model

    Get PDF
    The line model assumes long distance calls between non neighboring processors. In this sense, the line model is strongly related to circuit-switched networks, wormhole routing, optical networks supporting wavelength division multiplexing, ATM switching, and networks supporting connected mode routing protocols. Since the chordal rings are competitors of networks as meshes or tori because of theirs short diameter and bounded degree, it is of interest to ask whether they can support intensive communications (typically all-to-all) as efficiently as these networks. We propose polynomial algorithms to derive optimal or near optimal gossip protocols in the chordal ring

    Optimal Routing in Gossip Networks

    Full text link

    Gossip routing, percolation, and restart in wireless multi-hop networks

    Get PDF
    Route and service discovery in wireless multi-hop networks applies flooding or gossip routing to disseminate and gather information. Since packets may get lost, retransmissions of lost packets are required. In many protocols the retransmission timeout is fixed in the protocol specification. In this technical report we demonstrate that optimization of the timeout is required in order to ensure proper functioning of flooding schemes. Based on an experimental study, we apply percolation theory and derive analytical models for computing the optimal restart timeout. To the best of our knowledge, this is the first comprehensive study of gossip routing, percolation, and restart in this context

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page
    • …
    corecore