564 research outputs found

    GORTS: genetic algorithm based on one-by-one revision of two sides for dynamic travelling salesman problems

    Get PDF
    The dynamic travelling salesman problem (DTSP) is a natural extension of the standard travelling salesman problem, and it has attracted significant interest in recent years due to is practical applications. In this article, we propose an efficient solution for DTSP, based on a genetic algorithm (GA), and on the one-by-one revision of two sides (GORTS). More specifically, GORTS combines the global search ability of GA with the fast convergence feature of the method of one-by-one revision of two sides, in order to find the optimal solution in a short time. An experimental platform was designed to evaluate the performance of GORTS with TSPLIB. The experimental results show that the efficiency of GORTS compares favourably against other popular heuristic algorithms for DTSP. In particular, a prototype logistics system based on GORTS for a supermarket with an online map was designed and implemented. It was shown that this can provide optimised goods distribution routes for delivery staff, while considering real-time traffic information.This work was jointly sponsored by the National Natural Science Foundation of China under Grants 61472192 and 91646116, the Scientific and Technological Support Project (Society) of Jiangsu Province under Grant BE2016776, the Talent Project in Six Fields of Jiangsu Province under Grant 2015-JNHB-012, the “333” Scientific Research program of Jiangsu Province under Grant BRA2017228, and the Jiangsu Key Laboratory of Big Data Security and Intelligent Processing at NJUPT

    NETWORK DESIGN UNDER DEMAND UNCERTAINTY

    Get PDF
    A methodology for network design under demand uncertainty is proposed in this dissertation. The uncertainty is caused by the dynamic nature of the IP-based traffic which is expected to betransported directly over the optical layer in the future. Thus, there is a need to incorporate the uncertainty into a design modelexplicitly. We assume that each demand can be represented as a random variable, and then develop an optimization model to minimizethe cost of routing and bandwidth provisioning. The optimization problem is formulated as a nonlinear Multicommodity Flow problemusing Chance-Constrained Programming to capture both the demand variability and levels of uncertainty guarantee. Numerical work ispresented based on a heuristic solution approach using a linear approximation to transform the nonlinear problem to a simpler linearprogramming problem. In addition, the impact of the uncertainty on a two-layer network is investigated. This will determine how theChance-Constrained Programming based scheme can be practically implemented. Finally, the implementation guidelines for developingan updating process are provided

    Data-Driven Optimization Models for Feeder Bus Network Design

    Get PDF
    Urbanization is not a modern phenomenon. However, it is worthwhile to note that the world urban population growth curve has up till recently followed a quadratic-hyperbolic pattern (Korotayey and Khaltourina, 2006). As cities become larger and their population expand, large and growing metropolises have to face the enormous traffic demand. To alleviate the increasing traffic congestion, public transit has been considered as the ideal solution to such troubles and problems restricting urban development. The metro is a type of efficient, dependable and high-capacity public transport adapted in metropolises worldwide. At the same time, the residents from crowded cities migrated to the suburban since 1950s. Such sub-urbanization brings more decentralized travel demands and has challenged to the public transit system. Even the metro lines are extended from inner city to outer city, the commuters living in suburban still have difficulty to get to the rail station due to the limited transportation resources. It is becoming inevitable to develop the regional transit network such as feeder bus that picks up the passengers from various locations and transfer them to the metro stations or transportation hubs. The feeder bus will greatly improve the efficiency of metro stations whose service area in the suburban area is usually limited. Therefore, how to develop a well-integrated feeder system is becoming an important task to planners and engineers. Realizing the above critical issues, the dissertation focus on the feeder bus network design problem (FBNDP) and contributes to three main parts: 1. Develop a data-mining strategy to retrieve OD pair from the large scale of the cellphone data. The OD pairs are able to present the users’ daily behaver including the location of residence, workplace with the timestamp of each trip. The spatial distribution of urban rail transit user demand from the OD pair will help to support the establishment and optimization of the feeder bus network. The dissertation details the procedure of data acquisition and utilization. The machine leaning is applied to predict the travel demand in the future. 2. Present a mathematical model to design the appropriate service area and routing plans for a flexible feeder transit. The proposed model features in utilizing the real-world data input and simultaneously selecting bus stops and designing the route from those targeted stops to urban rail stops. 3. Propose an improved feeder bus network design model to provide precise service to the commuters. Considering the commuters are time-sensitive during the peak hours, the time-windows of each demand is taken in to account when generating the routes and the schedule of feeder bus system. The model aims to pick up the demand within the time-windows of the commuters’ departure time and drop off them within the reasonable time. The commuters will benefit from the shorter waiting time, shorter walking distance and efficient transfer timetable

    Joint energy efficiency and load balancing optimization in hybrid IP/SDN networks

    Get PDF
    Software-defined networking (SDN) is a paradigm that provides flexibility and programmability to computer networks. By introducing SDN nodes in a legacy IP network topology, network operators can benefit on higher control over the infrastructure. However, this migration is not a fast or straightforward process. Furthermore, to provide an adequate quality of service in hybrid IP/SDN networks, the coordination of both IP and SDN paradigm is fundamental. In this paper, this coordination is used to solve two optimization problems that are typically solved separately: (i) traffic load balancing and (ii) power consumption minimization. Each of these problems has opposing objectives, and thus, their joint consideration implies striking a balance between them. Therefore, this paper proposes the Hybrid Spreading Load Algorithm (HSLA) heuristic that jointly faces the problems of balancing traffic by minimizing link utilization and network's power consumption in a hybrid IP/SDN network. HSLA is evaluated over differently sized topologies using different methods to select which nodes are migrated from IP to SDN. These evaluations reveal that alternative approaches that only address one of the objectives are outperformed by HSLA

    Joint optimization for wireless sensor networks in critical infrastructures

    Get PDF
    Energy optimization represents one of the main goals in wireless sensor network design where a typical sensor node has usually operated by making use of the battery with limited-capacity. In this thesis, the following main problems are addressed: first, the joint optimization of the energy consumption and the delay for conventional wireless sensor networks is presented. Second, the joint optimization of the information quality and energy consumption of the wireless sensor networks based structural health monitoring is outlined. Finally, the multi-objectives optimization of the former problem under several constraints is shown. In the first main problem, the following points are presented: we introduce a joint multi-objective optimization formulation for both energy and delay for most sensor nodes in various applications. Then, we present the Karush-Kuhn-Tucker analysis to demonstrate the optimal solution for each formulation. We introduce a method of determining the knee on the Pareto front curve, which meets the network designer interest for focusing on more practical solutions. The sensor node placement optimization has a significant role in wireless sensor networks, especially in structural health monitoring. In the second main problem of this work, the existing work optimizes the node placement and routing separately (by performing routing after carrying out the node placement). However, this approach does not guarantee the optimality of the overall solution. A joint optimization of sensor placement, routing, and flow assignment is introduced and is solved using mixed-integer programming modelling. In the third main problem of this study, we revisit the placement problem in wireless sensor networks of structural health monitoring by using multi-objective optimization. Furthermore, we take into consideration more constraints that were not taken into account before. This includes the maximum capacity per link and the node-disjoint routing. Since maximum capacity constraint is essential to study the data delivery over limited-capacity wireless links, node-disjoint routing is necessary to achieve load balancing and longer wireless sensor networks lifetime. We list the results of the previous problems, and then we evaluate the corresponding results

    The Application of Evolutionary Algorithms for Energy Efficient Grooming of Scheduled Sub-Wavelength Traffic Demands in Optical Networks

    Get PDF
    In recent years there has been a growing recognition of the need for developing energy efficient network design approaches for WDM backbone networks as well. The typical approach has been to switch off some components such as line cards and router ports during low demand periods, and has focussed on traditional static and dynamic traffic models. In this paper, we present a new approach that exploits knowledge of demand holding times to intelligently share resources among non-overlapping demands and reduce the overall power consumption of the network. We consider the fixed-window scheduled traffic model (STM), and present i) a Genetic Algorithm (GA) and ii) a Memetic Algorithm (MA) based strategy that jointly minimizes both power consumption and transceiver cost for the logical topology. Simulation results clearly demonstrate that both of the proposed algorithms outperform traditional holding time unaware (HTU) approaches; the GA leads to additional improvements even compared to the shortest path holding time aware (HTA) heuristic. However, the MA manages to achieve similar results to the GA while taking up 4 to 5 times less computational resources and time to compute

    Integrating the Cost of Quality into Multi-Products Multi-Components Supply Chain Network Design

    Get PDF
    More than ever before the success of a company heavily depends on its supply chain and how efficient the network. A supply chain needs to be configured in such a manner as to minimize cost while still maintaining a good quality level to satisfy the end user and to be efficient, designing for the network and the whole chain is important. Including the cost of quality into the process of designing the network can be rewording and revealing. In this research the concept of cost of quality as a performance measure was integrated into the supply chain network designing process for a supply chain concerned with multi products multi components. This research discusses how this supply chain can be mathematically modeled, solutions for the resulted model and finally studied the effect of the inclusion of the quality as a parameter on the result of the deigning process. Nonlinear mixed integer mathematical model was developed for the problem and for solving the model two solutions based on Genetic algorithm and Tabu Search were developed and compared. The results and analysis show that the solution based on the Genetic algorithm outperforms the Tabu Search based solution especially in large size problems. In addition, the analysis showed that the inclusion of the cost of quality into the model effect the designing process and changes the resultant routes

    Particle swarm optimization for routing and wavelength assignment in next generation WDM networks.

    Get PDF
    PhDAll-optical Wave Division Multiplexed (WDM) networking is a promising technology for long-haul backbone and large metropolitan optical networks in order to meet the non-diminishing bandwidth demands of future applications and services. Examples could include archival and recovery of data to/from Storage Area Networks (i.e. for banks), High bandwidth medical imaging (for remote operations), High Definition (HD) digital broadcast and streaming over the Internet, distributed orchestrated computing, and peak-demand short-term connectivity for Access Network providers and wireless network operators for backhaul surges. One desirable feature is fast and automatic provisioning. Connection (lightpath) provisioning in optically switched networks requires both route computation and a single wavelength to be assigned for the lightpath. This is called Routing and Wavelength Assignment (RWA). RWA can be classified as static RWA and dynamic RWA. Static RWA is an NP-hard (non-polynomial time hard) optimisation task. Dynamic RWA is even more challenging as connection requests arrive dynamically, on-the-fly and have random connection holding times. Traditionally, global-optimum mathematical search schemes like integer linear programming and graph colouring are used to find an optimal solution for NP-hard problems. However such schemes become unusable for connection provisioning in a dynamic environment, due to the computational complexity and time required to undertake the search. To perform dynamic provisioning, different heuristic and stochastic techniques are used. Particle Swarm Optimisation (PSO) is a population-based global optimisation scheme that belongs to the class of evolutionary search algorithms and has successfully been used to solve many NP-hard optimisation problems in both static and dynamic environments. In this thesis, a novel PSO based scheme is proposed to solve the static RWA case, which can achieve optimal/near-optimal solution. In order to reduce the risk of premature convergence of the swarm and to avoid selecting local optima, a search scheme is proposed to solve the static RWA, based on the position of swarm‘s global best particle and personal best position of each particle. To solve dynamic RWA problem, a PSO based scheme is proposed which can provision a connection within a fraction of a second. This feature is crucial to provisioning services like bandwidth on demand connectivity. To improve the convergence speed of the swarm towards an optimal/near-optimal solution, a novel chaotic factor is introduced into the PSO algorithm, i.e. CPSO, which helps the swarm reach a relatively good solution in fewer iterations. Experimental results for PSO/CPSO based dynamic RWA algorithms show that the proposed schemes perform better compared to other evolutionary techniques like genetic algorithms, ant colony optimization. This is both in terms of quality of solution and computation time. The proposed schemes also show significant improvements in blocking probability performance compared to traditional dynamic RWA schemes like SP-FF and SP-MU algorithms

    Algoritmos evolutivos para alguns problemas em telecomunicaçÔes

    Get PDF
    Orientadores: Flavio Keidi Miyazawa, Mauricio Guilherme de Carvalho ResendeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nos Ășltimos anos, as redes de telecomunicação tem experienciado um grande aumento no fluxo de dados. Desde a utilização massiva de vĂ­deo sob demanda atĂ© o incontĂĄvel nĂșmero de dispositivos mĂłveis trocando texto e vĂ­deo, o trĂĄfego alcançou uma escala capaz de superar a capacidade das redes atuais. Portanto, as companhias de telecomunicação ao redor do mundo tem sido forçadas a aumentar a capacidade de suas redes para servir esta crescente demanda. Como o custo de instalar uma infraestrutura de rede Ă© geralmente muito grande, o projeto de redes usa fortemente ferramentas de otimização para manter os custos tĂŁo baixos quanto possĂ­vel. Nesta tese, nĂłs analisamos vĂĄrios aspectos do projeto e implementação de redes de telecomunicação. Primeiramente, nĂłs apresentamos um novo problema de projeto de redes usado para servir demandas sem fio de dispositivos mĂłveis e rotear tal trĂĄfego para a rede principal. Tais redes de acesso sĂŁo baseadas em tecnologias sem fio modernos como Wi-Fi, LTE e HSPA. Este problema consideramos vĂĄrias restriçÔes reais e Ă© difĂ­cil de ser resolvido. NĂłs estudamos casos reais nas vizinhanças de uma grande cidade nos Estados Unidos. Em seguida, nĂłs apresentamos uma variação do problema de localização de hubs usado para modelar as redes principais (backbones ou laços centrais). Este problema tambĂ©m pode ser utilizado para modelar redes de transporte de cargas e passageiros. NĂłs tambĂ©m estudamos o problema de clusterização correlacionada com sobreposiçÔes usado para modelar o comportamento dos usuĂĄrios quando utilizam seus equipamentos mĂłveis. Neste problema, nĂłs podemos rotular um objeto usando mĂșltiplos rĂłtulos e analisar a conexĂŁo entre eles. Este problema Ă© adequado para anĂĄlise de mobilidade de equipamentos que pode ser usada para estimar o trĂĄfego em uma dada regiĂŁo. E finalmente, nĂłs analisamos o licenciamento de espectro sobre uma perspectiva governamental. Nestes casos, uma agĂȘncia do governo deseja vender licenças para companhias de telecomunicação para que operem em uma dada faixa de espectro. Este processo usualmente Ă© conduzido usando leilĂ”es combinatoriais. Para todos problemas, nĂłs propomos algoritmos genĂ©ticos de chaves aleatĂłrias viciadas e modelos de programação linear inteira mista para resolvĂȘ-los (exceto para o problema de clusterização correlacionada com sobreposição, devido sua natureza nĂŁo-linear). Os algoritmos que propusemos foram capazes de superar algoritmos do estado da arte para todos problemasAbstract: Cutting and packing problems are common problems that occur in many industry and business process. Their optimized resolution leads to great profits in several sectors. A common problem, that occur in textil and paper industries, is to cut a strip of some material to obtain several small items, using the minimum length of material. This problem, known by Two Dimensional Strip Packing Problem (2SP), is a hard combinatorial optimization problem. In this work, we present an exact algorithm to 2SP, restricted to two staged cuts (known by Two Dimensional Level Strip Packing, 2LSP). The algorithm uses the branch-and-price technique, and heuristics based on approximation algorithms to obtain upper bounds. The algorithm obtained optimal or almost optimal for small and moderate sized instancesAbstract: In last twenty years, telecommunication networks have experienced a huge increase in data utilization. From massive on-demand video to uncountable mobile devices exchanging text and video, traffic reached scales that overcame the network capacities. Therefore, telecommunication companies around the world have been forced to increase their capacity to serve this increasing demand. As the cost to deploy network infrastructure is usually very large, the design of a network heavily uses optimization tools to keep costs as low as possible. In this thesis, we analyze several aspects of the design and deployment of communication networks. First, we present a new network design problem used to serve wireless demands from mobile devices and route the traffic to the core network. Such access networks are based on modern wireless access technologies such as Wi-Fi, LTE, and HSPA. This problem has several real world constraints and it is hard to solve. We study real cases of the vicinity of a large city in the United States. Following, we present a variation of the hub-location problem used to model these core networks. Such problem is also suitable to model transportation networks. We also study the overlapping correlation clustering problem used to model the user's behavior when using their mobile devices. In such problem, one can label an object with multiple labels and analyzes the connections between them. Although this problem is very generic, it is suitable to analyze device mobility which can be used to estimate traffic in geographical regions. Finally, we analyze spectrum licensing from a governmental perspective. In these cases, a governmental agency wants to sell rights for telecommunication companies to operate over a given spectrum range. This process usually is conducted using combinatorial auctions. For all problems we propose biased random-key genetic algorithms and mixed integer linear programming models (except in the case of the overlapping correlation clustering problem due its non-linear nature). Our algorithms were able to overcome the state of the art algorithms for all problemsDoutoradoCiĂȘncia da ComputaçãoDoutor em CiĂȘncia da Computaçã
    • 

    corecore