1,850 research outputs found

    Implementation of Distributed Time Exchange Based Cooperative Forwarding

    Full text link
    In this paper, we design and implement time exchange (TE) based cooperative forwarding where nodes use transmission time slots as incentives for relaying. We focus on distributed joint time slot exchange and relay selection in the sum goodput maximization of the overall network. We formulate the design objective as a mixed integer nonlinear programming (MINLP) problem and provide a polynomial time distributed solution of the MINLP. We implement the designed algorithm in the software defined radio enabled USRP nodes of the ORBIT indoor wireless testbed. The ORBIT grid is used as a global control plane for exchange of control information between the USRP nodes. Experimental results suggest that TE can significantly increase the sum goodput of the network. We also demonstrate the performance of a goodput optimization algorithm that is proportionally fair.Comment: Accepted in 2012 Military Communications Conferenc

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    DMT Optimal Cooperative Protocols with Destination-Based Selection of the Best Relay

    Get PDF
    We design a cooperative protocol in the context of wireless mesh networks in order to increase the reliability of wireless links. Destination terminals ask for cooperation when they fail in decoding data frames transmitted by source terminals. In that case, each destination terminal D calls a specific relay terminal B with a signaling frame to help its transmission with source terminal S. To select appropriate relays, destination terminals maintain tables of relay terminals, one for each possible source address. These tables are constituted by passively overhearing ongoing transmissions. Hence, when cooperation is needed between S and D, and when a relay B is found by terminal D in the relay table associated with terminal S, the destination terminal sends a negative acknowledgment frame that contains the address of B. When the best relay B has successfully decoded the source message, it sends a copy of the data frame to D using a selective decode-andforward transmission scheme. The on-demand approach allows maximization of the spatial multiplexing gain and the cooperation of the best relay allows maximization of the spatial diversity order. Hence, the proposed protocol achieves optimal diversitymultiplexing trade-off performance. Moreover, this performance is achieved through a collision-free selection process

    Optimal Cooperative MAC Protocol with Efficient Selection of Relay Terminals

    Get PDF
    A new cooperative protocol is proposed in the context of wireless mesh networks. The protocol implements ondemand cooperation, i.e. cooperation between a source terminal and a destination terminal is activated only when needed. In that case, only the best relay among a set of available terminals is re-transmitting the source message to the destination terminal. This typical approach is improved using three additional features. First, a splitting algorithm is implemented to select the best relay. This ensures a fast selection process. Moreover, the duration of the selection process is now completely characterized. Second, only terminals that improve the outage probability of the direct link are allowed to participate to the relay selection. By this means, inefficient cooperation is now avoided. Finally, the destination terminal discards the source message when it fails to decode it. This saves processing time since the destination terminal does not need to combine the replicas of the source message: the one from the source terminal and the one from the best relay. We prove that the proposed protocol achieves an optimal performance in terms of Diversity-Multiplexing Tradeoff (DMT)

    On-Demand Cooperation MAC Protocols with Optimal Diversity-Multiplexing Tradeoff

    Get PDF
    This paper presents access protocols with optimal Diversity-Multiplexing Tradeoff (DMT) performance in the context of IEEE 802.11-based mesh networks. The protocols are characterized by two main features: on-demand cooperation and selection of the best relay terminal. The on-demand characteristic refers to the ability of a destination terminal to ask for cooperation when it fails in decoding the message transmitted by a source terminal. This approach allows maximization of the spatial multiplexing gain. The selection of the best relay terminal allows maximization of the diversity order. Hence, the optimal DMT curve is achieved with these protocols
    corecore