4,541 research outputs found

    Cooperation and Storage Tradeoffs in Power-Grids with Renewable Energy Resources

    Full text link
    One of the most important challenges in smart grid systems is the integration of renewable energy resources into its design. In this work, two different techniques to mitigate the time varying and intermittent nature of renewable energy generation are considered. The first one is the use of storage, which smooths out the fluctuations in the renewable energy generation across time. The second technique is the concept of distributed generation combined with cooperation by exchanging energy among the distributed sources. This technique averages out the variation in energy production across space. This paper analyzes the trade-off between these two techniques. The problem is formulated as a stochastic optimization problem with the objective of minimizing the time average cost of energy exchange within the grid. First, an analytical model of the optimal cost is provided by investigating the steady state of the system for some specific scenarios. Then, an algorithm to solve the cost minimization problem using the technique of Lyapunov optimization is developed and results for the performance of the algorithm are provided. These results show that in the presence of limited storage devices, the grid can benefit greatly from cooperation, whereas in the presence of large storage capacity, cooperation does not yield much benefit. Further, it is observed that most of the gains from cooperation can be obtained by exchanging energy only among a few energy harvesting sources

    Distributed Stochastic Market Clearing with High-Penetration Wind Power

    Full text link
    Integrating renewable energy into the modern power grid requires risk-cognizant dispatch of resources to account for the stochastic availability of renewables. Toward this goal, day-ahead stochastic market clearing with high-penetration wind energy is pursued in this paper based on the DC optimal power flow (OPF). The objective is to minimize the social cost which consists of conventional generation costs, end-user disutility, as well as a risk measure of the system re-dispatching cost. Capitalizing on the conditional value-at-risk (CVaR), the novel model is able to mitigate the potentially high risk of the recourse actions to compensate wind forecast errors. The resulting convex optimization task is tackled via a distribution-free sample average based approximation to bypass the prohibitively complex high-dimensional integration. Furthermore, to cope with possibly large-scale dispatchable loads, a fast distributed solver is developed with guaranteed convergence using the alternating direction method of multipliers (ADMM). Numerical results tested on a modified benchmark system are reported to corroborate the merits of the novel framework and proposed approaches.Comment: To appear in IEEE Transactions on Power Systems; 12 pages and 9 figure

    MultiGreen: Cost-Minimizing Multi-source Datacenter Power Supply with Online Control

    Get PDF
    Session 4: Data Center Energy ManagementFulltext of the conference paper in: http://conferences.sigcomm.org/eenergy/2013/papers/p13.pdfFaced by soaring power cost, large footprint of carbon emis- sion and unpredictable power outage, more and more mod- ern Cloud Service Providers (CSPs) begin to mitigate these challenges by equipping their Datacenter Power Supply Sys- tem (DPSS) with multiple sources: (1) smart grid with time- varying electricity prices, (2) uninterrupted power supply (UPS) of finite capacity, and (3) intermittent green or re- newable energy. It remains a significant challenge how to operate among multiple power supply sources in a comple- mentary manner, to deliver reliable energy to datacenter users over time, while minimizing a CSP’s operational cost over the long run. This paper proposes an efficient, online control algorithm for DPSS, called MultiGreen. MultiGreen is based on an innovative two-timescale Lyapunov optimiza- tion technique. Without requiring a priori knowledge of system statistics, MultiGreen allows CSPs to make online decisions on purchasing grid energy at two time scales (in the long-term market and in the real-time market), leveraging renewable energy, and opportunistically charging and dis- charging UPS, in order to fully leverage the available green energy and low electricity prices at times for minimum op- erational cost. Our detailed analysis and trace-driven sim- ulations based on one-month real-world data have demon- strated the optimality (in terms of the tradeoff between min- imization of DPSS operational cost and satisfaction of data- center availability) and stability (performance guarantee in cases of fluctuating energy demand and supply) of Multi- Green

    Short-term Self-Scheduling of Virtual Energy Hub Plant within Thermal Energy Market

    Get PDF
    Multicarrier energy systems create new challenges as well as opportunities in future energy systems. One of these challenges is the interaction among multiple energy systems and energy hubs in different energy markets. By the advent of the local thermal energy market in many countries, energy hubs' scheduling becomes more prominent. In this article, a new approach to energy hubs' scheduling is offered, called virtual energy hub (VEH). The proposed concept of the energy hub, which is named as the VEH in this article, is referred to as an architecture based on the energy hub concept beside the proposed self-scheduling approach. The VEH is operated based on the different energy carriers and facilities as well as maximizes its revenue by participating in the various local energy markets. The proposed VEH optimizes its revenue from participating in the electrical and thermal energy markets and by examining both local markets. Participation of a player in the energy markets by using the integrated point of view can be reached to a higher benefit and optimal operation of the facilities in comparison with independent energy systems. In a competitive energy market, a VEH optimizes its self-scheduling problem in order to maximize its benefit considering uncertainties related to renewable resources. To handle the problem under uncertainty, a nonprobabilistic information gap method is implemented in this study. The proposed model enables the VEH to pursue two different strategies concerning uncertainties, namely risk-averse strategy and risk-seeker strategy. For effective participation of the renewable-based VEH plant in the local energy market, a compressed air energy storage unit is used as a solution for the volatility of the wind power generation. Finally, the proposed model is applied to a test case, and the numerical results validate the proposed approach
    • …
    corecore