2,201 research outputs found

    Optimal Regret Bounds for Selecting the State Representation in Reinforcement Learning

    Get PDF
    We consider an agent interacting with an environment in a single stream of actions, observations, and rewards, with no reset. This process is not assumed to be a Markov Decision Process (MDP). Rather, the agent has several representations (mapping histories of past interactions to a discrete state space) of the environment with unknown dynamics, only some of which result in an MDP. The goal is to minimize the average regret criterion against an agent who knows an MDP representation giving the highest optimal reward, and acts optimally in it. Recent regret bounds for this setting are of order O(T2/3)O(T^{2/3}) with an additive term constant yet exponential in some characteristics of the optimal MDP. We propose an algorithm whose regret after TT time steps is O(T)O(\sqrt{T}), with all constants reasonably small. This is optimal in TT since O(T)O(\sqrt{T}) is the optimal regret in the setting of learning in a (single discrete) MDP

    Regret Bounds for Reinforcement Learning with Policy Advice

    Get PDF
    In some reinforcement learning problems an agent may be provided with a set of input policies, perhaps learned from prior experience or provided by advisors. We present a reinforcement learning with policy advice (RLPA) algorithm which leverages this input set and learns to use the best policy in the set for the reinforcement learning task at hand. We prove that RLPA has a sub-linear regret of \tilde O(\sqrt{T}) relative to the best input policy, and that both this regret and its computational complexity are independent of the size of the state and action space. Our empirical simulations support our theoretical analysis. This suggests RLPA may offer significant advantages in large domains where some prior good policies are provided

    Selecting Near-Optimal Approximate State Representations in Reinforcement Learning

    Full text link
    We consider a reinforcement learning setting introduced in (Maillard et al., NIPS 2011) where the learner does not have explicit access to the states of the underlying Markov decision process (MDP). Instead, she has access to several models that map histories of past interactions to states. Here we improve over known regret bounds in this setting, and more importantly generalize to the case where the models given to the learner do not contain a true model resulting in an MDP representation but only approximations of it. We also give improved error bounds for state aggregation

    Online Regret Bounds for Undiscounted Continuous Reinforcement Learning

    Full text link
    We derive sublinear regret bounds for undiscounted reinforcement learning in continuous state space. The proposed algorithm combines state aggregation with the use of upper confidence bounds for implementing optimism in the face of uncertainty. Beside the existence of an optimal policy which satisfies the Poisson equation, the only assumptions made are Holder continuity of rewards and transition probabilities

    Extreme State Aggregation Beyond MDPs

    Full text link
    We consider a Reinforcement Learning setup where an agent interacts with an environment in observation-reward-action cycles without any (esp.\ MDP) assumptions on the environment. State aggregation and more generally feature reinforcement learning is concerned with mapping histories/raw-states to reduced/aggregated states. The idea behind both is that the resulting reduced process (approximately) forms a small stationary finite-state MDP, which can then be efficiently solved or learnt. We considerably generalize existing aggregation results by showing that even if the reduced process is not an MDP, the (q-)value functions and (optimal) policies of an associated MDP with same state-space size solve the original problem, as long as the solution can approximately be represented as a function of the reduced states. This implies an upper bound on the required state space size that holds uniformly for all RL problems. It may also explain why RL algorithms designed for MDPs sometimes perform well beyond MDPs.Comment: 28 LaTeX pages. 8 Theorem

    Regret Bounds for Learning State Representations in Reinforcement Learning

    Get PDF
    International audienceWe consider the problem of online reinforcement learning when several state representations (mapping histories to a discrete state space) are available to the learning agent. At least one of these representations is assumed to induce a Markov decision process (MDP), and the performance of the agent is measured in terms of cumulative regret against the optimal policy giving the highest average reward in this MDP representation. We propose an algorithm (UCB-MS) with O(√ T) regret in any communicating MDP. The regret bound shows that UCB-MS automatically adapts to the Markov model and improves over the currently known best bound of order O(T 2/3)
    corecore