139 research outputs found

    Commitment and Oblivious Transfer in the Bounded Storage Model with Errors

    Get PDF
    The bounded storage model restricts the memory of an adversary in a cryptographic protocol, rather than restricting its computational power, making information theoretically secure protocols feasible. We present the first protocols for commitment and oblivious transfer in the bounded storage model with errors, i.e., the model where the public random sources available to the two parties are not exactly the same, but instead are only required to have a small Hamming distance between themselves. Commitment and oblivious transfer protocols were known previously only for the error-free variant of the bounded storage model, which is harder to realize

    On the Oblivious Transfer Capacity of Generalized Erasure Channels against Malicious Adversaries

    Get PDF
    Noisy channels are a powerful resource for cryptography as they can be used to obtain information-theoretically secure key agreement, commitment and oblivious transfer protocols, among others. Oblivious transfer (OT) is a fundamental primitive since it is complete for secure multi-party computation, and the OT capacity characterizes how efficiently a channel can be used for obtaining string oblivious transfer. Ahlswede and Csisz\'{a}r (\emph{ISIT'07}) presented upper and lower bounds on the OT capacity of generalized erasure channels (GEC) against passive adversaries. In the case of GEC with erasure probability at least 1/2, the upper and lower bounds match and therefore the OT capacity was determined. It was later proved by Pinto et al. (\emph{IEEE Trans. Inf. Theory 57(8)}) that in this case there is also a protocol against malicious adversaries achieving the same lower bound, and hence the OT capacity is identical for passive and malicious adversaries. In the case of GEC with erasure probability smaller than 1/2, the known lower bound against passive adversaries that was established by Ahlswede and Csisz\'{a}r does not match their upper bound and it was unknown whether this OT rate could be achieved against malicious adversaries as well. In this work we show that there is a protocol against malicious adversaries achieving the same OT rate that was obtained against passive adversaries. In order to obtain our results we introduce a novel use of interactive hashing that is suitable for dealing with the case of low erasure probability (p<1/2p^* <1/2)

    On the Efficiency of Classical and Quantum Secure Function Evaluation

    Full text link
    We provide bounds on the efficiency of secure one-sided output two-party computation of arbitrary finite functions from trusted distributed randomness in the statistical case. From these results we derive bounds on the efficiency of protocols that use different variants of OT as a black-box. When applied to implementations of OT, these bounds generalize most known results to the statistical case. Our results hold in particular for transformations between a finite number of primitives and for any error. In the second part we study the efficiency of quantum protocols implementing OT. While most classical lower bounds for perfectly secure reductions of OT to distributed randomness still hold in the quantum setting, we present a statistically secure protocol that violates these bounds by an arbitrarily large factor. We then prove a weaker lower bound that does hold in the statistical quantum setting and implies that even quantum protocols cannot extend OT. Finally, we present two lower bounds for reductions of OT to commitments and a protocol based on string commitments that is optimal with respect to both of these bounds

    Cryptography in the Bounded-Quantum-Storage Model

    Get PDF
    This thesis initiates the study of cryptographic protocols in the bounded-quantum-storage model. On the practical side, simple protocols for Rabin Oblivious Transfer, 1-2 Oblivious Transfer and Bit Commitment are presented. No quantum memory is required for honest players, whereas the protocols can only be broken by an adversary controlling a large amount of quantum memory. The protocols are efficient, non-interactive and can be implemented with today's technology. On the theoretical side, new entropic uncertainty relations involving min-entropy are established and used to prove the security of protocols according to new strong security definitions. For instance, in the realistic setting of Quantum Key Distribution (QKD) against quantum-memory-bounded eavesdroppers, the uncertainty relation allows to prove the security of QKD protocols while tolerating considerably higher error rates compared to the standard model with unbounded adversaries.Comment: PhD Thesis, BRICS, University of Aarhus, Denmark, 128 page

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before

    Quantum oblivious transfer: a short review

    Full text link
    Quantum cryptography is the field of cryptography that explores the quantum properties of matter. Its aim is to develop primitives beyond the reach of classical cryptography or to improve on existing classical implementations. Although much of the work in this field is dedicated to quantum key distribution (QKD), some important steps were made towards the study and development of quantum oblivious transfer (QOT). It is possible to draw a comparison between the application structure of both QKD and QOT primitives. Just as QKD protocols allow quantum-safe communication, QOT protocols allow quantum-safe computation. However, the conditions under which QOT is actually quantum-safe have been subject to a great amount of scrutiny and study. In this review article, we survey the work developed around the concept of oblivious transfer in the area of theoretical quantum cryptography, with an emphasis on some proposed protocols and their security requirements. We review the impossibility results that daunt this primitive and discuss several quantum security models under which it is possible to prove QOT security.Comment: 40 pages, 14 figure
    corecore