148 research outputs found

    Optimal scheduling of smart microgrids considering electric vehicle battery swapping stations

    Get PDF
    Smart microgrids belong to a set of networks that operate independently. These networks have technologies such as electric vehicle battery swapping stations that aim to economic welfare with own resources of smart microgrids. These resources should support other services, for example, the supply of energy at peak hours. This study addresses the formulation of a decision matrix based on operating conditions of electric vehicles and examines economically viable alternatives for a battery swapping station. The decision matrix is implemented to manage the swapping, charging, and discharging of electric vehicles. Furthermore, this study integrates a smart microgrid model to assess the operational strategies of the aggregator, which can act like a prosumer by managing both electric vehicle battery swapping stations and energy storage systems. The smart microgrid model proposed includes elements used for demand response and generators with renewable energies. This model investigates the effect of the wholesale, local and electric-vehicle markets. Additionally, the model includes uncertainty issues related to the planning for the infrastructure of the electric vehicle battery swapping station, variability of electricity prices, weather conditions, and load forecasting. This article also analyzes how both the user and the providers maximize their economic benefits with the hybrid optimization algorithm called variable neighborhood search - differential evolutionary particle swarm optimization. The strategy to organize the infrastructure of these charging stations reaches a reduction of 72% in the overall cost. This reduction percentage is obtained calculating the random solution with respect to the suboptimal solution

    Online Station Assignment for Electric Vehicle Battery Swapping

    Get PDF
    This paper investigates the online station assignment for (commercial) electric vehicles (EVs) that request battery swapping from a central operator, i.e., in the absence of future information a battery swapping service station has to be assigned instantly to each EV upon its request. Based on EVs' locations, the availability of fully-charged batteries at service stations in the system, as well as traffic conditions, the assignment aims to minimize cost to EVs and congestion at service stations. Inspired by a polynomial-time offline solution via a bipartite matching approach, we develop an efficient and implementable online station assignment algorithm that provably achieves the tight (optimal) competitive ratio under mild conditions. Monte Carlo experiments on a real transportation network by Baidu Maps show that our algorithm performs reasonably well on realistic inputs, even with a certain amount of estimation error in parameters

    Online Station Assignment for Electric Vehicle Battery Swapping

    Get PDF
    This paper investigates the online station assignment for (commercial) electric vehicles (EVs) that request battery swapping from a central operator, i.e., in the absence of future information a battery swapping service station has to be assigned instantly to each EV upon its request. Based on EVs' locations, the availability of fully-charged batteries at service stations in the system, as well as traffic conditions, the assignment aims to minimize cost to EVs and congestion at service stations. Inspired by a polynomial-time offline solution via a bipartite matching approach, we develop an efficient and implementable online station assignment algorithm that provably achieves the tight (optimal) competitive ratio under mild conditions. Monte Carlo experiments on a real transportation network by Baidu Maps show that our algorithm performs reasonably well on realistic inputs, even with a certain amount of estimation error in parameters

    Towards a Multimodal Charging Network: Joint Planning of Charging Stations and Battery Swapping Stations for Electrified Ride-Hailing Fleets

    Full text link
    This paper considers a multimodal charging network in which charging stations and battery swapping stations are built in tandem to support the electrified ride-hailing fleet in a synergistic manner. Our central thesis is predicated on the observation that charging stations are cost-effective, making them ideal for scaling up electric vehicles in ride-hailing fleets in the beginning, while battery swapping stations offer quick turnaround and can be deployed in tandem with charging stations to improve fleet utilization and reduce operational costs for the ride-hailing platform. To fulfill this vision, we consider a ride-hailing platform that expands the multimodal charging network with a multi-stage investment budget and operates a ride-hailing fleet to maximize its profit. A multi-stage network expansion model is proposed to characterize the coupled planning and operational decisions, which captures demand elasticity, passenger waiting time, charging and swapping waiting times, as well as their dependence on fleet status and charging infrastructure. The overall problem is formulated as a nonconvex program. Instead of pursuing the globally optimal solution, we establish a theoretical upper bound through relaxation, reformulation, and decomposition so that the global optimality of the derived solution to the nonconvex problem is verifiable. In the case study for Manhattan, we find that the two facilities complement each other and play different roles during the expansion of charging infrastructure: at the early stage, the platform always prioritizes building charging stations to electrify the fleet, after which it initiates the deployment of swapping stations to enhance fleet utilization. Compared to the charging-only case, ..

    Optimizing the battery charging and swapping infrastructure for electric short-haul aircraft—The case of electric flight in Norway

    Get PDF
    Recent advances in battery technology have opened the possibility for short-haul electric flight. This is particularly attractive for commuter airlines that operate in remote regions such as archipelagos or Nordic fjords where the geography impedes other means of transportation. In this paper we address the question of how to optimize the charging infrastructure (charging power, spare batteries) for an airline when considering a battery swapping system. Our analysis considers the expenditures needed for (i) the significant charging power requirements, (ii) spare aircraft batteries, (iii) the used electricity, and (iv) delay costs, should the infrastructure not be sufficient to accommodate the flight schedule. The main result of this paper is the formulation of this problem as a two-phase recourse model. This is required to account for the variation of the flight schedule throughout a year of operations. With this, both the strategic (infrastructure sizing) and tactical (battery recharge scheduling) planning are addressed The model is applied for Widerøe Airlines, with a network of 7 hub airports and 36 regional airports in Norway. The results show that a total investment of 4412 kW in electricity power supply and 25 spare batteries is needed for the considered network, resulting in a daily investment of €11700. We also quantify the benefits of considering an entire year of operations for our analysis, instead of just one congested day (7% cost reduction) or one average day of operations (31% reduction) at the most congested airport

    Data-driven optimization of bus schedules under uncertainties

    Full text link
    Plusieurs sous-problèmes d’optimisation se posent lors de la planification des transports publics. Le problème d’itinéraires de véhicule (PIV) est l’un d’entre eux et consiste à minimiser les coûts opérationnels tout en assignant exactement un autobus par trajet planifié de sorte que le nombre d’autobus entreposé par dépôt ne dépasse pas la capacité maximale disponible. Bien que les transports publics soient sujets à plusieurs sources d’incertitude (à la fois endogènes et exogènes) pouvant engendrer des variations des temps de trajet et de la consommation d’énergie, le PIV et ses variantes sont la plupart du temps résolus de façon déterministe pour des raisons de résolubilité. Toutefois, cette hypothèse peut compromettre le respect de l’horaire établi lorsque les temps des trajets considérés sont fixes (c.-à-d. déterministes) et peut produire des solutions impliquant des politiques de gestion des batteries inadéquates lorsque la consommation d’énergie est aussi considérée comme fixe. Dans cette thèse, nous proposons une méthodologie pour mesurer la fiabilité (ou le respect de l’horaire établi) d’un service de transport public ainsi que des modèles mathématiques stochastiques et orientés données et des algorithmes de branch-and-price pour deux variantes de ce problème, à savoir le problème d’itinéraires de véhicule avec dépôts multiples (PIVDM) et le problème d’itinéraires de véhicule électrique (PIV-E). Afin d’évaluer la fiabilité, c.-à-d. la tolérance aux délais, de certains itinéraires de véhicule, nous prédisons d’abord la distribution des temps de trajet des autobus. Pour ce faire, nous comparons plusieurs modèles probabilistes selon leur capacité à prédire correctement la fonction de densité des temps de trajet des autobus sur le long terme. Ensuite, nous estimons à l'aide d'une simulation de Monte-Carlo la fiabilité des horaires d’autobus en générant des temps de trajet aléatoires à chaque itération. Nous intégrons alors le modèle probabiliste le plus approprié, celui qui est capable de prédire avec précision à la fois la véritable fonction de densité conditionnelle des temps de trajet et les retards secondaires espérés, dans nos modèles d'optimisation basés sur les données. Deuxièmement, nous introduisons un modèle pour PIVDM fiable avec des temps de trajet stochastiques. Ce problème d’optimisation bi-objectif vise à minimiser les coûts opérationnels et les pénalités associées aux retards. Un algorithme heuristique basé sur la génération de colonnes avec des sous-problèmes stochastiques est proposé pour résoudre ce problème. Cet algorithme calcule de manière dynamique les retards secondaires espérés à mesure que de nouvelles colonnes sont générées. Troisièmement, nous proposons un nouveau programme stochastique à deux étapes avec recours pour le PIVDM électrique avec des temps de trajet et des consommations d’énergie stochastiques. La politique de recours est conçue pour rétablir la faisabilité énergétique lorsque les itinéraires de véhicule produits a priori se révèlent non réalisables. Toutefois, cette flexibilité vient au prix de potentiels retards induits. Une adaptation d’un algorithme de branch-and-price est développé pour évaluer la pertinence de cette approche pour deux types d'autobus électriques à batterie disponibles sur le marché. Enfin, nous présentons un premier modèle stochastique pour le PIV-E avec dégradation de la batterie. Le modèle sous contrainte en probabilité proposé tient compte de l’incertitude de la consommation d’énergie, permettant ainsi un contrôle efficace de la dégradation de la batterie grâce au contrôle effectif de l’état de charge (EdC) moyen et l’écart de EdC. Ce modèle, combiné à l’algorithme de branch-and-price, sert d’outil pour balancer les coûts opérationnels et la dégradation de la batterie.The vehicle scheduling problem (VSP) is one of the sub-problems of public transport planning. It aims to minimize operational costs while assigning exactly one bus per timetabled trip and respecting the capacity of each depot. Even thought public transport planning is subject to various endogenous and exogenous causes of uncertainty, notably affecting travel time and energy consumption, the VSP and its variants are usually solved deterministically to address tractability issues. However, considering deterministic travel time in the VSP can compromise schedule adherence, whereas considering deterministic energy consumption in the electric VSP (E-VSP) may result in solutions with inadequate battery management. In this thesis, we propose a methodology for measuring the reliability (or schedule adherence) of public transport, along with stochastic and data-driven mathematical models and branch-and-price algorithms for two variations of this problem, namely the multi-depot vehicle scheduling problem (MDVSP) and the E-VSP. To assess the reliability of vehicle schedules in terms of their tolerance to delays, we first predict the distribution of bus travel times. We compare numerous probabilistic models for the long-term prediction of bus travel time density. Using a Monte Carlo simulation, we then estimate the reliability of bus schedules by generating random travel times at each iteration. Subsequently, we integrate the most suitable probabilistic model, capable of accurately predicting both the true conditional density function of the travel time and the expected secondary delays, into the data-driven optimization models. Second, we introduce a model for the reliable MDVSP with stochastic travel time minimizing both the operational costs and penalties associated with delays. To effectively tackle this problem, we propose a heuristic column generation-based algorithm, which incorporates stochastic pricing problems. This algorithm dynamically computes the expected secondary delays as new columns are generated. Third, we propose a new two-stage stochastic program with recourse for the electric MDVSP with stochastic travel time and energy consumption. The recourse policy aims to restore energy feasibility when a priori vehicle schedules are unfeasible, which may lead to delays. An adapted algorithm based on column generation is developed to assess the relevance of this approach for two types of commercially available battery electric buses. Finally, we present the first stochastic model for the E-VSP with battery degradation. The proposed chance-constraint model incorporates energy consumption uncertainty, allowing for effective control of battery degradation by regulating the average state-of-charge (SOC) and SoC deviation in each discharging and charging cycle. This model, in combination with a tailored branch-and-price algorithm, serves as a tool to strike a balance between operational costs and battery degradation

    Mathematical Optimization for Routing and Logistic Problems

    Get PDF
    In this thesis, we focus on mathematical optimization models and algorithms for solving routing and logistic problems. The first contribution regards a path and mission planning problem, called Carrier-Vehicle Traveling Salesman Problem (CVTSP), for a system of heterogeneous vehicles. A Mixed-Integer Second Order Conic Programming (MISOCP) model and a Benders-like enumeration algorithm are presented for solving CVTSP. The second work concerns a class of routing problems, referred to as Interceptor Vehicle Routing Problems (IVRPs). They generalize VRPs in the sense that target points are allowed to move from their initial location according to a known motion. We present a novel MISOCP formulation and a Branch-and-Price algorithm based on a Lagrangian Relaxation of the vehicle-assignment constraints. Other two contributions focus on waste flow management problems: the former considers a deterministic setting in which a Mixed-Integer Linear Programming (MILP) formulation is used as a Decision Support System for a real-world waste operator, whereas the latter deals with the uncertainty of the waste generation amounts by means of Two-Stage Multiperiod Stochastic Mixed-Integer Programming formulations. Finally, we give an overview on the optimization challenges arising in electric car-sharing systems, both at strategic and tactical planning level

    A modified clustering search based genetic algorithm for the proactive electric vehicle routing problem

    Get PDF
    In this paper, an electric vehicle routing problem with time windows and under travel time uncertainty (U-EVRW) is addressed. The U-EVRW aims to find the optimal proactive routing plan of the electric vehicles under the travel time uncertainty during the route of the vehicles which is rarely studied in the literature. Furthermore, customer time windows, limited loading capacities and limited battery capacities constraints are also incorporated. A new mixed integer programming (MIP) model is formulated for the proposed U-EVRW. In addition to the commercial CPLEX Optimizer version 20.1.0, a modified Clustering Search based Genetic algorithm (MCSGA) is developed as a solution method. Numerical tests are conducted on the one hand to validate the effectiveness of the proposed MCSGA and on the other hand to analyze the impact of travel time uncertainty of the electric vehicle on the solutions quality

    Stochastic Programming Models For Electric Vehicles’ Operation: Network Design And Routing Strategies

    Get PDF
    Logistic and transportation (L&T) activities become a significant contributor to social and economic advances throughout the modern world Road L&T activities are responsible for a large percentage of CO2 emissions, with more than 24% of the total emission, which mostly caused by fossil fuel vehicles. Researchers, governments, and automotive companies put extensive effort to incorporate new solutions and innovations into the L&T system. As a result, Electric Vehicles (EVs) are introduced and universally accepted as one of the solutions to environmental issues. Subsequently, L&T companies are encouraged to adopt fleets of EVs. Integrating the EVs into the logistic and transportation systems introduces new challenges from strategic, planning, and operational perspectives. At the strategical level, one of the main challenges to be addressed to expand the EV charging infrastructures is the location of charging stations. Due to the longer charging time in EVs compared to the conventional vehicles, the parking locations can be considered as the candidate locations for installing charging stations. Another essential factor that should be considered in designing the Electric Vehicle Charging Station (EVCS) network is the size or capacity of charging stations. EV drivers\u27 arrival times in a community vary depending on various factors such as the purpose of the trip, time of the day, and day of the week. So, the capacity of stations and the number of chargers significantly affect the accessibility and utilization of charging stations. Also, the EVCSs can be equipped by distinct types of chargers, which are different in terms of installation cost, charging time, and charging price. City planners and EVCS owners can make low-risk and high-utilization investment decisions by considering EV users charging pattern and their willingness to pay for different charger types. At the operational level, managing a fleet of electric vehicles can offer several incentives to the L&T companies. EVs can be equipped with autonomous driving technologies to facilitate online decision making, on-board computation, and connectivity. Energy-efficient routing decisions for a fleet of autonomous electric vehicles (AEV) can significantly improve the asset utilization and vehicles’ battery life. However, employing AEVs also comes with new challenges. Two of the main operational challenges for AEVs in transport applications is their limited range and the availability of charging stations. Effective routing strategies for an AEV fleet require solving the vehicle routing problem (VRP) while considering additional constraints related to the limited range and number of charging stations. In this dissertation, we develop models and algorithms to address the challenges in integrating the EVs into the logistic and transportation systems

    A Coordinated Battery Swapping Service Management Scheme Based on Battery Heterogeneity

    Get PDF
    The service management based on battery heterogeneity has become an increasingly important research problem in battery swapping technology. In this paper, with the method of bipartite matching, we first theoretically analyse the offline optimization problem of battery swapping service under battery heterogeneity. Nevertheless, the information of global view used in offline optimization solution cannot be known in advance during real-time operation. To address the disadvantage, an online framework comprising several sub-procedures is proposed for heterogeneous battery implementation. Firstly, by incorporating battery swapping station (BSS) local status such as charging and waiting queue of heterogeneous batteries, a charging slot allocation mechanism is designed. Utilizing the proposed allocation method, the charging priority is determined by the proportion of heterogeneous batteries demand, so as to guarantee charging fairness. Secondly, with the help of reservation information, the proposed allocation method can further be improved by predicting the future arrival distribution of heterogeneous types of electric vehicles. Thirdly, according to the service demand prediction based on long short-term memory neural network, joint optimization of BSS-selection and charging cost can be achieved by charging power adjustment. Simulation results indicate the desirable performance of proposed scheme in balancing the demands of multi-party participators
    • …
    corecore