848 research outputs found

    Optimal Receiver Design for Diffusive Molecular Communication With Flow and Additive Noise

    Full text link
    In this paper, we perform receiver design for a diffusive molecular communication environment. Our model includes flow in any direction, sources of information molecules in addition to the transmitter, and enzymes in the propagation environment to mitigate intersymbol interference. We characterize the mutual information between receiver observations to show how often independent observations can be made. We derive the maximum likelihood sequence detector to provide a lower bound on the bit error probability. We propose the family of weighted sum detectors for more practical implementation and derive their expected bit error probability. Under certain conditions, the performance of the optimal weighted sum detector is shown to be equivalent to a matched filter. Receiver simulation results show the tradeoff in detector complexity versus achievable bit error probability, and that a slow flow in any direction can improve the performance of a weighted sum detector.Comment: 14 pages, 7 figures, 1 appendix. To appear in IEEE Transactions on NanoBioscience (submitted July 31, 2013, revised June 18, 2014, accepted July 7, 2014

    Diffusive Molecular Communication with Disruptive Flows

    Full text link
    In this paper, we study the performance of detectors in a diffusive molecular communication environment where steady uniform flow is present. We derive the expected number of information molecules to be observed in a passive spherical receiver, and determine the impact of flow on the assumption that the concentration of molecules throughout the receiver is uniform. Simulation results show the impact of advection on detector performance as a function of the flow's magnitude and direction. We highlight that there are disruptive flows, i.e., flows that are not in the direction of information transmission, that lead to an improvement in detector performance as long as the disruptive flow does not dominate diffusion and sufficient samples are taken.Comment: 7 pages, 1 table, 5 figures. Will be presented at the 2014 IEEE International Conference on Communications (ICC) in Sydney, Australia, on September 12, 201

    Channel Estimation for Diffusive MIMO Molecular Communications

    Full text link
    In diffusion-based communication, as for molecular systems, the achievable data rate is very low due to the slow nature of diffusion and the existence of severe inter-symbol interference (ISI). Multiple-input multiple-output (MIMO) technique can be used to improve the data rate. Knowledge of channel impulse response (CIR) is essential for equalization and detection in MIMO systems. This paper presents a training-based CIR estimation for diffusive MIMO (D-MIMO) channels. Maximum likelihood and least-squares estimators are derived, and the training sequences are designed to minimize the corresponding Cram\'er-Rao bound. Sub-optimal estimators are compared to Cram\'er-Rao bound to validate their performance.Comment: 5 pages, 5 figures, EuCNC 201

    A Unifying Model for External Noise Sources and ISI in Diffusive Molecular Communication

    Full text link
    This paper considers the impact of external noise sources, including interfering transmitters, on a diffusive molecular communication system, where the impact is measured as the number of noise molecules expected to be observed at a passive receiver. A unifying model for noise, multiuser interference, and intersymbol interference is presented, where, under certain circumstances, interference can be approximated as a noise source that is emitting continuously. The model includes the presence of advection and molecule degradation. The time-varying and asymptotic impact is derived for a series of special cases, some of which facilitate closed-form solutions. Simulation results show the accuracy of the expressions derived for the impact of a continuously-emitting noise source, and show how approximating intersymbol interference as a noise source can simplify the calculation of the expected bit error probability of a weighted sum detector.Comment: 14 pages, 7 figures, 4 tables, 1 appendix. To appear in IEEE Journal on Selected Areas in Communications (JSAC). Submitted October 21, 2013, revised April 21, 2014, accepted June 3, 201

    Optimal Detection for Diffusion-Based Molecular Timing Channels

    Get PDF
    This work studies optimal detection for communication over diffusion-based molecular timing (DBMT) channels. The transmitter simultaneously releases multiple information particles, where the information is encoded in the time of release. The receiver decodes the transmitted information based on the random time of arrival of the information particles, which is modeled as an additive noise channel. For a DBMT channel without flow, this noise follows the L\'evy distribution. Under this channel model, the maximum-likelihood (ML) detector is derived and shown to have high computational complexity. It is also shown that under ML detection, releasing multiple particles improves performance, while for any additive channel with α\alpha-stable noise where α<1\alpha<1 (such as the DBMT channel), under linear processing at the receiver, releasing multiple particles degrades performance relative to releasing a single particle. Hence, a new low-complexity detector, which is based on the first arrival (FA) among all the transmitted particles, is proposed. It is shown that for a small number of released particles, the performance of the FA detector is very close to that of the ML detector. On the other hand, error exponent analysis shows that the performance of the two detectors differ when the number of released particles is large.Comment: 16 pages, 9 figures. Submitted for publicatio

    Channel Estimation for Diffusive Molecular Communications

    Full text link
    In molecular communication (MC) systems, the \textit{expected} number of molecules observed at the receiver over time after the instantaneous release of molecules by the transmitter is referred to as the channel impulse response (CIR). Knowledge of the CIR is needed for the design of detection and equalization schemes. In this paper, we present a training-based CIR estimation framework for MC systems which aims at estimating the CIR based on the \textit{observed} number of molecules at the receiver due to emission of a \textit{sequence} of known numbers of molecules by the transmitter. Thereby, we distinguish two scenarios depending on whether or not statistical channel knowledge is available. In particular, we derive maximum likelihood (ML) and least sum of square errors (LSSE) estimators which do not require any knowledge of the channel statistics. For the case, when statistical channel knowledge is available, the corresponding maximum a posteriori (MAP) and linear minimum mean square error (LMMSE) estimators are provided. As performance bound, we derive the classical Cramer Rao (CR) lower bound, valid for any unbiased estimator, which does not exploit statistical channel knowledge, and the Bayesian CR lower bound, valid for any unbiased estimator, which exploits statistical channel knowledge. Finally, we propose optimal and suboptimal training sequence designs for the considered MC system. Simulation results confirm the analysis and compare the performance of the proposed estimation techniques with the respective CR lower bounds.Comment: to be appeared in IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:1510.0861

    Capacity of Molecular Channels with Imperfect Particle-Intensity Modulation and Detection

    Full text link
    This work introduces the particle-intensity channel (PIC) as a model for molecular communication systems and characterizes the properties of the optimal input distribution and the capacity limits for this system. In the PIC, the transmitter encodes information, in symbols of a given duration, based on the number of particles released, and the receiver detects and decodes the message based on the number of particles detected during the symbol interval. In this channel, the transmitter may be unable to control precisely the number of particles released, and the receiver may not detect all the particles that arrive. We demonstrate that the optimal input distribution for this channel always has mass points at zero and the maximum number of particles that can be released. We then consider diffusive particle transport, derive the capacity expression when the input distribution is binary, and show conditions under which the binary input is capacity-achieving. In particular, we demonstrate that when the transmitter cannot generate particles at a high rate, the optimal input distribution is binary.Comment: Accepted at IEEE International Symposium on Information Theory (ISIT
    • …
    corecore