1,516 research outputs found

    Computing Optimal Coverability Costs in Priced Timed Petri Nets

    Get PDF
    We consider timed Petri nets, i.e., unbounded Petri nets where each token carries a real-valued clock. Transition arcs are labeled with time intervals, which specify constraints on the ages of tokens. Our cost model assigns token storage costs per time unit to places, and firing costs to transitions. We study the cost to reach a given control-state. In general, a cost-optimal run may not exist. However, we show that the infimum of the costs is computable.Comment: 26 pages. Contribution to LICS 201

    A recursive paradigm for aligning observed behavior of large structured process models

    Get PDF
    The alignment of observed and modeled behavior is a crucial problem in process mining, since it opens the door for conformance checking and enhancement of process models. The state of the art techniques for the computation of alignments rely on a full exploration of the combination of the model state space and the observed behavior (an event log), which hampers their applicability for large instances. This paper presents a fresh view to the alignment problem: the computation of alignments is casted as the resolution of Integer Linear Programming models, where the user can decide the granularity of the alignment steps. Moreover, a novel recursive strategy is used to split the problem into small pieces, exponentially reducing the complexity of the ILP models to be solved. The contributions of this paper represent a promising alternative to fight the inherent complexity of computing alignments for large instances.Peer ReviewedPostprint (author's final draft

    Task sequence planning in a robot workcell using AND/OR nets

    Get PDF
    An approach to task sequence planning for a generalized robotic manufacturing or material handling workcell is described. Given the descriptions of the objects in this system and all feasible geometric relationships among these objects, an AND/OR net which describes the relationships of all feasible geometric states and associated feasibility criteria for net transitions is generated. This AND/OR net is mapped into a Petri net which incorporates all feasible sequences of operations. The resulting Petri net is shown to be bounded and have guaranteed properties of liveness, safeness, and reversibility. Sequences are found from the reachability tree of the Petri net. Feasibility criteria for net transitions may be used to generate an extended Petri net representation of lower level command sequences. The resulting Petri net representation may be used for on-line scheduling and control of the system of feasible sequences. A simulation example of the sequences is described

    Optimal trajectory generation for Petri nets

    Get PDF
    Recently, the increasing complexity of IT systems requires the early verification and validation of the system design in order to avoid the costly redesign. Furthermore, the efficiency of system operation can be improved by solving system optimization problems (like resource allocation and scheduling problems). Such combined optimization and validation, verification problems can be typically expressed as reachability problems with quantitative or qualitative measurements. The current paper proposes a solution to compute the optimal trajectories for Petri net-based reachability problems with cost parameters. This is an improved variant of the basic integrated verification and optimization method introduced in [11] combining the efficiency of Process Network Synthesis optimization algorithms with the modeling power of Petri nets

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    Analysis of Timed and Long-Run Objectives for Markov Automata

    Get PDF
    Markov automata (MAs) extend labelled transition systems with random delays and probabilistic branching. Action-labelled transitions are instantaneous and yield a distribution over states, whereas timed transitions impose a random delay governed by an exponential distribution. MAs are thus a nondeterministic variation of continuous-time Markov chains. MAs are compositional and are used to provide a semantics for engineering frameworks such as (dynamic) fault trees, (generalised) stochastic Petri nets, and the Architecture Analysis & Design Language (AADL). This paper considers the quantitative analysis of MAs. We consider three objectives: expected time, long-run average, and timed (interval) reachability. Expected time objectives focus on determining the minimal (or maximal) expected time to reach a set of states. Long-run objectives determine the fraction of time to be in a set of states when considering an infinite time horizon. Timed reachability objectives are about computing the probability to reach a set of states within a given time interval. This paper presents the foundations and details of the algorithms and their correctness proofs. We report on several case studies conducted using a prototypical tool implementation of the algorithms, driven by the MAPA modelling language for efficiently generating MAs.Comment: arXiv admin note: substantial text overlap with arXiv:1305.705

    An efficient algorithm for the parallel solution of high-dimensional differential equations

    Full text link
    The study of high-dimensional differential equations is challenging and difficult due to the analytical and computational intractability. Here, we improve the speed of waveform relaxation (WR), a method to simulate high-dimensional differential-algebraic equations. This new method termed adaptive waveform relaxation (AWR) is tested on a communication network example. Further we propose different heuristics for computing graph partitions tailored to adaptive waveform relaxation. We find that AWR coupled with appropriate graph partitioning methods provides a speedup by a factor between 3 and 16
    • …
    corecore