643 research outputs found

    Optimal Reachability for Weighted Timed Games

    Get PDF
    Weighted timed automata are timed automata annotated with costs on locations and transitions. The optimal game-reachability problem for these automata is to find the best-cost strategy of supplying the inputs so as to ensure reachability of a target set within a specified number of iterations. The only known complexity bound for this problem is a doubly-exponential upper bound. We establish a singly-exponential upper bound and show that there exist automata with exponentially many states in a single region with pair-wise distinct optimal strategies

    Playing Stochastically in Weighted Timed Games to Emulate Memory

    Get PDF
    Weighted timed games are two-player zero-sum games played in a timed automaton equipped with integer weights. We consider optimal reachability objectives, in which one of the players, that we call Min, wants to reach a target location while minimising the cumulated weight. While knowing if Min has a strategy to guarantee a value lower than a given threshold is known to be undecidable (with two or more clocks), several conditions, one of them being the divergence, have been given to recover decidability. In such weighted timed games (like in untimed weighted games in the presence of negative weights), Min may need finite memory to play (close to) optimally. This is thus tempting to try to emulate this finite memory with other strategic capabilities. In this work, we allow the players to use stochastic decisions, both in the choice of transitions and of timing delays. We give for the first time a definition of the expected value in weighted timed games, overcoming several theoretical challenges. We then show that, in divergent weighted timed games, the stochastic value is indeed equal to the classical (deterministic) value, thus proving that Min can guarantee the same value while only using stochastic choices, and no memory

    Playing Stochastically in Weighted Timed Games to Emulate Memory

    Full text link
    Weighted timed games are two-player zero-sum games played in a timed automaton equipped with integer weights. We consider optimal reachability objectives, in which one of the players, that we call Min, wants to reach a target location while minimising the cumulated weight. While knowing if Min has a strategy to guarantee a value lower than a given threshold is known to be undecidable (with two or more clocks), several conditions, one of them being the divergence, have been given to recover decidability. In such weighted timed games (like in untimed weighted games in the presence of negative weights), Min may need finite memory to play (close to) optimally. This is thus tempting to try to emulate this finite memory with other strategic capabilities. In this work, we allow the players to use stochastic decisions, both in the choice of transitions and of timing delays. We give for the first time a definition of the expected value in weighted timed games, overcoming several theoretical challenges. We then show that, in divergent weighted timed games, the stochastic value is indeed equal to the classical (deterministic) value, thus proving that Min can guarantee the same value while only using stochastic choices, and no memory

    Optimal Reachability in Divergent Weighted Timed Games

    Full text link
    Weighted timed games are played by two players on a timed automaton equipped with weights: one player wants to minimise the accumulated weight while reaching a target, while the other has an opposite objective. Used in a reactive synthesis perspective, this quantitative extension of timed games allows one to measure the quality of controllers. Weighted timed games are notoriously difficult and quickly undecidable, even when restricted to non-negative weights. Decidability results exist for subclasses of one-clock games, and for a subclass with non-negative weights defined by a semantical restriction on the weights of cycles. In this work, we introduce the class of divergent weighted timed games as a generalisation of this semantical restriction to arbitrary weights. We show how to compute their optimal value, yielding the first decidable class of weighted timed games with negative weights and an arbitrary number of clocks. In addition, we prove that divergence can be decided in polynomial space. Last, we prove that for untimed games, this restriction yields a class of games for which the value can be computed in polynomial time

    Two-Player Reachability-Price Games on Single-Clock Timed Automata

    Full text link
    We study two player reachability-price games on single-clock timed automata. The problem is as follows: given a state of the automaton, determine whether the first player can guarantee reaching one of the designated goal locations. If a goal location can be reached then we also want to compute the optimum price of doing so. Our contribution is twofold. First, we develop a theory of cost functions, which provide a comprehensive methodology for the analysis of this problem. This theory allows us to establish our second contribution, an EXPTIME algorithm for computing the optimum reachability price, which improves the existing 3EXPTIME upper bound.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Kleene Algebras and Semimodules for Energy Problems

    Get PDF
    With the purpose of unifying a number of approaches to energy problems found in the literature, we introduce generalized energy automata. These are finite automata whose edges are labeled with energy functions that define how energy levels evolve during transitions. Uncovering a close connection between energy problems and reachability and B\"uchi acceptance for semiring-weighted automata, we show that these generalized energy problems are decidable. We also provide complexity results for important special cases

    Simple Priced Timed Games Are Not That Simple

    Get PDF
    Priced timed games are two-player zero-sum games played on priced timed automata (whose locations and transitions are labeled by weights modeling the costs of spending time in a state and executing an action, respectively). The goals of the players are to minimise and maximise the cost to reach a target location, respectively. We consider priced timed games with one clock and arbitrary (positive and negative) weights and show that, for an important subclass of theirs (the so-called simple priced timed games), one can compute, in exponential time, the optimal values that the players can achieve, with their associated optimal strategies. As side results, we also show that one-clock priced timed games are determined and that we can use our result on simple priced timed games to solve the more general class of so-called reset-acyclic priced timed games (with arbitrary weights and one-clock)
    • …
    corecore