6,614 research outputs found

    Exploiting Trust Degree for Multiple-Antenna User Cooperation

    Full text link
    For a user cooperation system with multiple antennas, we consider a trust degree based cooperation techniques to explore the influence of the trustworthiness between users on the communication systems. For the system with two communication pairs, when one communication pair achieves its quality of service (QoS) requirement, they can help the transmission of the other communication pair according to the trust degree, which quantifies the trustworthiness between users in the cooperation. For given trust degree, we investigate the user cooperation strategies, which include the power allocation and precoder design for various antenna configurations. For SISO and MISO cases, we provide the optimal power allocation and beamformer design that maximize the expected achievable rates while guaranteeing the QoS requirement. For a SIMO case, we resort to semidefinite relaxation (SDR) technique and block coordinate update (BCU) method to solve the corresponding problem, and guarantee the rank-one solutions at each step. For a MIMO case, as MIMO is the generalization of MISO and SIMO, the similarities among their problem structures inspire us to combine the methods from MISO and SIMO together to efficiently tackle MIMO case. Simulation results show that the trust degree information has a great effect on the performance of the user cooperation in terms of the expected achievable rate, and the proposed user cooperation strategies achieve high achievable rates for given trust degree.Comment: 15 pages,9 figures, to appear in IEEE Transactions on Wireless communication

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Power allocation in wireless multi-user relay networks

    Get PDF
    In this paper, we consider an amplify-and-forward wireless relay system where multiple source nodes communicate with their corresponding destination nodes with the help of relay nodes. Conventionally, each relay equally distributes the available resources to its relayed sources. This approach is clearly sub-optimal since each user experiences dissimilar channel conditions, and thus, demands different amount of allocated resources to meet its quality-of-service (QoS) request. Therefore, this paper presents novel power allocation schemes to i) maximize the minimum signal-to-noise ratio among all users; ii) minimize the maximum transmit power over all sources; iii) maximize the network throughput. Moreover, due to limited power, it may be impossible to satisfy the QoS requirement for every user. Consequently, an admission control algorithm should first be carried out to maximize the number of users possibly served. Then, optimal power allocation is performed. Although the joint optimal admission control and power allocation problem is combinatorially hard, we develop an effective heuristic algorithm with significantly reduced complexity. Even though theoretically sub-optimal, it performs remarkably well. The proposed power allocation problems are formulated using geometric programming (GP), a well-studied class of nonlinear and nonconvex optimization. Since a GP problem is readily transformed into an equivalent convex optimization problem, optimal solution can be obtained efficiently. Numerical results demonstrate the effectiveness of our proposed approach
    • 

    corecore