330 research outputs found

    Suitability of a commercial software defined radio system for passive coherent location

    Get PDF
    Includes abstract. Includes bibliographical references (leaves 98-99)

    Ambiguity Function Analysis and Direct-Path Signal Filtering of the Digital Audio Broadcast (DAB) Waveform for Passive Coherent Location (PCL)

    Get PDF
    This research presents an ambiguity function analysis of the digital audio broadcast (DAB) waveform and one signal detection approach based on signal space projection techniques that effectively filters the direct-path signal from the receiver target channel. Currently, most Passive Coherent Location (PCL) research efforts are focused and based on frequency modulated (FM) radio broadcasts and analog television (TV) waveforms. One active area of PCL research includes the search for new waveforms of opportunity that can be exploited for PCL applications. As considered for this research, one possible waveform of opportunity is the European digital radio standard DAB. For this research, the DAB performance is analyzed for application as a PCL waveform of opportunity. For this analysis, DAB ambiguity function calculations and ambiguity surface plots are created and evaluated. Signal detection capability, to include characterization of time-delay and Doppler-shift measurement accuracy and resolution, is investigated and determined to be quite acceptable for the DAB wavefor

    FM airborne passive radar

    Get PDF
    The airborne application of Passive Bistatic Radar (PBR) is the latest evolution of the now established international interest in passive radar techniques. An airborne passive system is cheaper to construct, easier to cool, lighter and requires less power than a traditional active radar system. These properties make it ideal for installation on an Unmanned Aerial Vehicle (UAV), especially for the next generation of Low Observable (LO) UAVs, complementing the platforms LO design with an inherently Low Probability of Intercept (LPI) air-to-air and air-to-ground sensing capability. A comprehensive literature review identified a lack of practical and theoretical research in airborne passive bistatic radar and a quantitative model was designed in order to un- derstand the theoretical performance achievable using a hypothetical system and FM as the illuminator of opportunity. The results demonstrated a useable surveillance volume, assuming conservative estimates for the receiver parameters and allowed the scoping and specification of an airborne demonstrator system. The demonstrator system was subsequently designed and constructed and flown on airborne experiments to collect data for both air-to-air and air-to-ground operation analysis. Subsequent processing demonstrated the successful detection of air targets which correlated with the actual aircraft positions as recorded by a Mode-S/ADS-B receiver. This is the first time this has been conclusively demonstrated in the literature. Doppler Beam Sharpening was used to create a coarse resolution image allowing the normalised bistatic clutter RCS of the stationary surface clutter to be analysed. This is the first time this technique has been applied to an airborne passive system and has yielded the first quantitive values of normalised bistatic clutter RCS at VHF. This successful demonstration of airborne passive radar techniques provides the proof of concept and identifies the key research areas that need to be addressed in order to fully develop this technology

    System design of the MeerKAT L - band 3D radar for monitoring near earth objects

    Get PDF
    This thesis investigates the current knowledge of small space debris (diameter less than 10 cm) and potentially hazardous asteroids (PHA) by the use of radar systems. It clearly identifies the challenges involved in detecting and tracking of small space debris and PHAs. The most significant challenges include: difficulty in tracking small space debris due to orbital instability and reduced radar cross-section (RCS), errors in some existing data sets, the lack of dedicated or contributing instruments in the Southern Hemisphere, and the large cost involved in building a high-performance radar for this purpose. This thesis investigates the cooperative use of the KAT-7 (7 antennas) and MeerKAT (64 antennas) radio telescope receivers in a radar system to improve monitoring of small debris and PHAs was investigated using theory and simulations, as a cost-effective solution. Parameters for a low cost and high-performance radar were chosen, based on the receiver digital back-end. Data from such radars will be used to add to existing catalogues thereby creating a constantly updated database of near Earth objects and bridging the data gap that is currently being filled by mathematical models. Based on literature and system requirements, quasi-monostatic, bistatic, multistatic, single input multiple output (SIMO) radar configurations were proposed for radio telescope arrays in detecting, tracking and imaging small space debris in the low Earth orbit (LEO) and PHAs. The maximum dwell time possible for the radar geometry was found to be 30 seconds, with coherent integration limitations of 2 ms and 121 ms for accelerating and non-accelerating targets, respectively. The multistatic and SIMO radar configurations showed sufficient detection (SNR 13 dB) for small debris and quasi-monostatic configuration for PHAs. Radar detection, tracking and imaging (ISAR) simulations were compared to theory and ambiguities in range and Doppler were compensated for. The main contribution made by this work is a system design for a high performance, cost effective 3D radar that uses the KAT-7 and MeerKAT radio telescope receivers in a commensal manner. Comparing theory and simulations, the SNR improvement, dwell time increase, tracking and imaging capabilities, for small debris and PHAs compared to existing assets, was illustrated. Since the MeerKAT radio telescope is a precursor for the SKA Africa, extrapolating the capabilities of the MeerKAT radar to the SKA radar implies that it would be the most sensitive and high performing contributor to space situational awareness, upon its completion. From this feasibility study, the MeerKAT 3D distributed radar will be able to detect debris of diameter less than 10 cm at altitudes between 700 km to 900 km, and PHAs, with a range resolution of 15 m, a minimum SNR of 14 dB for 152 pulses for a coherent integration time of 2.02 ms. The target range (derived from the two way delay), velocity (from Doppler frequency) and direction will be measured within an accuracy of: 2.116 m, 15.519 m/s, 0.083° (single antenna), respectively. The range, velocity accuracies and SNR affect orbit prediction accuracy by 0.021 minutes for orbit period and 0.0057° for orbit inclination. The multistatic radar was found to be the most suitable and computationally efficient configuration compared to the bistatic and SIMO configurations, and beamforming should be implemented as required by specific target geometry

    Beware the Boojum: Caveats and Strengths of Avian Radar

    Get PDF
    Radar provides a useful and powerful tool to wildlife biologists and ornithologists. However, radar also has the potential for errors on a scale not previously possible. In this paper, we focus on the strengths and limitations of avian surveillance radars that use marine radar front-ends integrated with digital radar processors to provide 360° of coverage. Modern digital radar processors automatically extract target information, including such various target attributes as location, speed, heading, intensity, and radar cross-section (size) as functions of time. Such data can be stored indefinitely, providing a rich resource for ornithologists and wildlife managers. Interpreting these attributes in view of the sensor’s characteristics from which they are generated is the key to correctly deriving and exploiting application-specific information about birds and bats. We also discuss (1) weather radars and air-traffic control surveillance radars that could be used to monitor birds on larger, coarser spatial scales; (2) other nonsurveillance radar configurations, such as vertically scanning radars used for vertical profiling of birds along a particular corridor; and (3) Doppler, single-target tracking radars used for extracting radial velocity and wing-beat frequency information from individual birds for species identification purposes

    Design of surface acoustic wave filters and applications in future communication systems

    Get PDF

    The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States. Volume 1 - Technical report

    Get PDF
    Satellite applications to aircraft communications, navigation, and surveillance over US including synthesized satellite network and aircraft equipment for air traffic contro

    Frequency Diverse Array Radar: Signal Characterization and Measurement Accuracy

    Get PDF
    Radar systems provide an important remote sensing capability, and are crucial to the layered sensing vision; a concept of operation that aims to apply the right number of the right types of sensors, in the right places, at the right times for superior battle space situational awareness. The layered sensing vision poses a range of technical challenges, including radar, that are yet to be addressed. To address the radar-specific design challenges, the research community responded with waveform diversity; a relatively new field of study which aims reduce the cost of remote sensing while improving performance. Early work suggests that the frequency diverse array radar may be able to perform several remote sensing missions simultaneously without sacrificing performance. With few techniques available for modeling and characterizing the frequency diverse array, this research aims to specify, validate and characterize a waveform diverse signal model that can be used to model a variety of traditional and contemporary radar configurations, including frequency diverse array radars. To meet the aim of the research, a generalized radar array signal model is specified. A representative hardware system is built to generate the arbitrary radar signals, then the measured and simulated signals are compared to validate the model. Using the generalized model, expressions for the average transmit signal power, angular resolution, and the ambiguity function are also derived. The range, velocity and direction-of-arrival measurement accuracies for a set of signal configurations are evaluated to determine whether the configuration improves fundamental measurement accuracy
    • …
    corecore