800 research outputs found

    Voltage stability of power systems with renewable-energy inverter-based generators: A review

    Get PDF
    © 2021 by the authors. The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids

    Reliability Studies of Distribution Systems Integrated with Energy Storage

    Get PDF
    The integration of distributed generations (DGs) - renewable DGs, in particular- into distribution networks is gradually increasing, driven by environmental concerns and technological advancements. However, the intermittency and the variability of these resources adversely affect the optimal operation and reliability of the power distribution system. Energy storage systems (ESSs) are perceived as potential solutions to address system reliability issues and to enhance renewable energy utilization. The reliability contribution of the ESS depends on the ownership of these resources, market structure, and the regulatory framework. This along with the technical characteristics and the component unavailability of ESS significantly affect the reliability value of ESS to an active distribution system. It is, therefore, necessary to develop methodologies to conduct the reliability assessment of ESS integrated modern distribution systems incorporating above-mentioned factors. This thesis presents a novel reliability model of ESS that incorporates different scenarios of ownership, market/regulatory structures, and the ESS technical and failure characteristics. A new methodology to integrate the developed ESS reliability model with the intermittent DGs and the time-dependent loads is also presented. The reliability value of ESS in distribution grid capacity enhancement, effective utilization of renewable energy, mitigations of outages, and managing the financial risk of utilities under quality regulations are quantified. The methodologies introduced in this thesis will be useful to assess the market mechanism, policy and regulatory implications regarding ESS in future distribution system planning and operation. Another important aspect of a modern distribution system is the increased reliability needs of customers, especially with the growing use of sensitive process/equipment. The financial losses of customers due to industrial process disruption or malfunction of these equipment because of short duration (voltage sag and momentary interruption) and long duration (sustained interruption) reliability events could be substantial. It is, therefore, necessary to consider these short duration reliability events in the reliability studies. This thesis introduces a novel approach for the integrated modeling of the short and long duration reliability events caused by the random failures. Furthermore, the active management of distribution systems with ESS, DG, and microgrid has the potential to mitigate different reliability events. Appropriate models are needed to explore their contribution and to assist the utilities and system planners in reliability based system upgrades. New probabilistic models are developed in this thesis to assess the role of ESS together with DG and microgrid in mitigating the adverse impact of different reliability events. The developed methodologies can easily incorporate the complex protection settings, alternate supplies configurations, and the presence of distributed energy resources/microgrids in the context of modern distribution systems. The ongoing changes in modern distribution systems are creating an enormous paradigm shift in infrastructure planning, grid operations, utility business models, and regulatory policies. In this context, the proposed methodologies and the research findings presented in this thesis should be useful to devise the appropriate market mechanisms and regulatory policies and to carry out the system upgrades considering the reliability needs of customers in modern distribution systems

    Feeder flow control and operation in large scale photovoltaic power plants and microgrids : Part I Feeder ow control in large scale photovoltaic power plants : Part II Multi-microgrids and optimal feeder ow operation of microgrids

    Get PDF
    This thesis deals with the integration of photovoltaic energy into the electrical grid. For this purpose, two main approaches can be identified: the interconnection of large scale photovoltaic power plants with the transmission network, and the interconnection of small and medium-scale photovoltaic installations with the distribution network. The first part of the thesis is focussed on the interconnection of large scale photovoltaic power plants. Large scale photovoltaic power plants are required to provide different ancillary services to the electrical networks. For this purpose, it is necessary to control the active and reactive power injected by photovoltaic power plants at the point of interconnection, i.e. to control the power flow through the main feeder. In this direction, it is developed a central controller capable of coordinating the different devices of the photovoltaic power plants as photovoltaic inverters, FACTS, capacitor banks and storage. The second part is focused on the distributed generation, consisting on small and medium-scale generation facilities connected to the distribution system. In this context, distribution grids, traditionally operated as passive systems, become active operated systems. In this part, the microgrid concept is analysed, which is one of the most promising solutions to manage, in a coordinated manner, the different distributed energy resources. Taking into account the possible transformation of the current distribution system to a multi-microgrid based system, the different architectures enabling microgrids interconnections are analysed. For the multi-microgrid operation, it could result interesting that a portion of their networks operate so that the power exchange is maintained constant, i.e. controlling the power flow at the main feeder. In this thesis, an optimal power flow problem formulation for managing the distributed generation of these feeder flow controlled microgrids is proposed

    Review of the State-of-the-Art on Adaptive Protection for Microgrids based on Communications

    Full text link
    The dominance of distributed energy resources in microgrids and the associated weather dependency require flexible protection. They include devices capable of adapting their protective settings as a reaction to (potential) changes in system state. Communication technologies have a key role in this system since the reactions of the adaptive devices shall be coordinated. This coordination imposes strict requirements: communications must be available and ultra-reliable with bounded latency in the order of milliseconds. This paper reviews the state-of-the-art in the field and provides a thorough analysis of the main related communication technologies and optimization techniques. We also present our perspective on the future of communication deployments in microgrids, indicating the viability of 5G wireless systems and multi-connectivity to enable adaptive protection.Comment: Accepted to IEEE Trans. on Industrial Informatic

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    Inter-trip links incorporated optimal protection coordination

    Get PDF
    Due to advances in smart grid, different communication links as delay, inter-trip and activation are used between relays to enhance the protection system performance. In this paper, the effect of inter-trip links on optimal coordination of directional overcurrent relays (DOCRs) is analytically investigated and modelled. Moreover, an index is proposed to find the optimum locations for inter-trip link installation to reach the minimal fault clearance times under the selectivity constraint. Then a method is proposed to determine the candidate locations of inter-trip links and the associated reduced operating times. An Exhaustive search approach is also used to validate the efficiency of the proposed method. The method is simulated and tested on distribution network of IEEE 33 bus using the Power Factory software and MATLAB optimization toolbox. Genetic algorithm is used as an optimization tool to find optimal settings of relays. The results indicate the capability of proposed method in optimal protection coordination with optimum inter-trips

    Relative Rate Observer Self-Tuning of Fuzzy PID Virtual Inertia Control for An Islanded microgrid

    Get PDF
    Expanding the usage of renewable energy in islanded microgrids leads to a reduction in its total inertia. Low inertia microgrids have difficulties in voltage and frequency control. That affected saving its stability and preventing a blackout. To improve low inertia islanded microgrids\u27 dynamic response and save their stability, this paper presented relative rate observer self-tuning fuzzy PID (RROSTF-PID) based on virtual inertia control (VIC) for an islanded microgrid with a high renewable energy sources (RESs) contribution. RROSTF-PID based on VIC\u27s success in showing remarkable improvement in the microgrid\u27s dynamic response and enhancement of its stability. Moreover, it handles different contingency conditions successfully by giving the desired frequency support. Ant colony optimization (ACO) technique is used to find the optimal values of the RROSTF-PID based on VIC parameters. Furthermore, using MATLAB TM/Simulink, RROSTF-PID based on VIC response is compared to Optimal Fuzzy PID (OF-PID) based VIC, Fuzzy PID (F-PID) based VIC, PID-based VIC, conventional VIC responses, and the microgrid without VIC response under different operation conditions

    Management of Islanded Operation of Microgirds

    Get PDF
    Distributed generations with continuously growing penetration levels offer potential solutions to energy security and reliability with minimum environmental impacts. Distributed Generations when connected to the area electric power systems provide numerous advantages. However, grid integration of distributed generations presents several technical challenges which has forced the systems planners and operators to account for the repercussions on the distribution feeders which are no longer passive in the presence of distributed generations. Grid integration of distributed generations requires accurate and reliable islanding detection methodology for secure system operation. Two distributed generation islanding detection methodologies are proposed in this dissertation. First, a passive islanding detection technique for grid-connected distributed generations based on parallel decision trees is proposed. The proposed approach relies on capturing the underlying signature of a wide variety of system events on a set of critical system parameters and utilizes multiple optimal decision tress in a parallel network for classification of system events. Second, a hybrid islanding detection method for grid-connected inverter based distributed generations combining decision trees and Sandia frequency shift method is also proposed. The proposed method combines passive and active islanding detection techniques to aggregate their individual advantages and reduce or eliminate their drawbacks. In smart grid paradigm, microgrids are the enabling engine for systematic integration of distributed generations with the utility grid. A systematic approach for controlled islanding of grid-connected microgrids is also proposed in this dissertation. The objective of the proposed approach is to develop an adaptive controlled islanding methodology to be implemented as a preventive control component in emergency control strategy for microgrid operations. An emergency power management strategy for microgrid autonomous operation subsequent to inadvertent islanding events is also proposed in this dissertation. The proposed approach integrates microgrid resources such as energy storage systems, demand response resources, and controllable micro-sources to layout a comprehensive power management strategy for ensuring secure and stable microgrid operation following an unplanned islanding event. In this dissertation, various case studies are presented to validate the proposed methods. The simulation results demonstrate the effectiveness of the proposed methodologies

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    Full text link
    © 2019 Elsevier Ltd Although microgrids facilitate the increased penetration of distributed generations (DGs) and improve the security of power supplies, they have some issues that need to be better understood and addressed before realising the full potential of microgrids. This paper presents a comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids. The discussion in this paper presented with a view to establishing microgrids as distinct from the existing distribution systems. This is accomplished by, firstly, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones. Also, the definitions, classifications and characteristics of microgrids are summarised to provide a sound basis for novice researchers to undertake ongoing research on microgrids

    A review on protection issues in micro-grids embedded with distribution generations

    Full text link
    © 2017 IEEE. According to recent developments, the application of distributed generations (DGs) has become popular especially in distribution systems. The high utilization of distributed generating resources in modern power systems can cause new challenges from protection coordination perspectives. Changing the distribution system structure from single-supply radial system to multi-source ring network, leads to the bidirectional power flow and also has a vital impact on protection coordination issues. In addition, micro-grids can be operated under grid-connected as well as islanded mode, and fault current is extensively different for these two operation modes. Therefore, traditional protection algorithms cannot be used in the advancement of power systems. In recent years, several research studies have been conducted to investigate the improvement of protection schemes in micro-grids. This paper presents a comprehensive review on protection problems resulting from micro-grids embedded with DGs, and discusses some alternate protection strategies
    corecore