1,560 research outputs found

    On the Fundamental Limits of Random Non-orthogonal Multiple Access in Cellular Massive IoT

    Get PDF
    Machine-to-machine (M2M) constitutes the communication paradigm at the basis of Internet of Things (IoT) vision. M2M solutions allow billions of multi-role devices to communicate with each other or with the underlying data transport infrastructure without, or with minimal, human intervention. Current solutions for wireless transmissions originally designed for human-based applications thus require a substantial shift to cope with the capacity issues in managing a huge amount of M2M devices. In this paper, we consider the multiple access techniques as promising solutions to support a large number of devices in cellular systems with limited radio resources. We focus on non-orthogonal multiple access (NOMA) where, with the aim to increase the channel efficiency, the devices share the same radio resources for their data transmission. This has been shown to provide optimal throughput from an information theoretic point of view.We consider a realistic system model and characterise the system performance in terms of throughput and energy efficiency in a NOMA scenario with a random packet arrival model, where we also derive the stability condition for the system to guarantee the performance.Comment: To appear in IEEE JSAC Special Issue on Non-Orthogonal Multiple Access for 5G System

    Joint User Scheduling and Power optimization in Full-Duplex Cells with Successive Interference Cancellation

    Full text link
    This paper considers a cellular system with a full-duplex base station and half-duplex users. The base station can activate one user in uplink or downlink (half-duplex mode), or two different users one in each direction simultaneously (full-duplex mode). Simultaneous transmissions in uplink and downlink causes self-interference at the base station and uplink-to-downlink interference at the downlink user. Although uplink-to-downlink interference is typically treated as noise, it is shown that successive interference decoding and cancellation (SIC mode) can lead to significant improvement in network utility, especially when user distribution is concentrated around a few hotspots. The proposed temporal fair user scheduling algorithm and corresponding power optimization utilizes full-duplex and SIC modes as well as half-duplex transmissions based on their impact on network utility. Simulation results reveal that the proposed strategy can achieve up to 95% average cell throughput improvement in typical indoor scenarios with respect to a conventional network in which the base station is half-duplex.Comment: To be appeared in IEEE Asilomar Conference on Signals, Systems, and Computers, 201
    • …
    corecore