2,978 research outputs found

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Energy Efficient Transmission over Space Shift Keying Modulated MIMO Channels

    Full text link
    Energy-efficient communication using a class of spatial modulation (SM) that encodes the source information entirely in the antenna indices is considered in this paper. The energy-efficient modulation design is formulated as a convex optimization problem, where minimum achievable average symbol power consumption is derived with rate, performance, and hardware constraints. The theoretical result bounds any modulation scheme of this class, and encompasses the existing space shift keying (SSK), generalized SSK (GSSK), and Hamming code-aided SSK (HSSK) schemes as special cases. The theoretical optimum is achieved by the proposed practical energy-efficient HSSK (EE-HSSK) scheme that incorporates a novel use of the Hamming code and Huffman code techniques in the alphabet and bit-mapping designs. Experimental studies demonstrate that EE-HSSK significantly outperforms existing schemes in achieving near-optimal energy efficiency. An analytical exposition of key properties of the existing GSSK (including SSK) modulation that motivates a fundamental consideration for the proposed energy-efficient modulation design is also provided

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme

    A General Framework for Performance Analysis of Space Shift Keying (SSK) Modulation for MISO Correlated Nakagami-m Fading Channels

    No full text
    International audienceIn this paper, we offer an accurate framework for analyzing the performance of wireless communication systems adopting the recently proposed Space Shift Keying (SSK) modulation scheme. More specifically, we study the performance of a Nt×1 MISO (Multiple–Input–Single–Output) system setup with Maximum–Likelihood (ML) detection and full Channel State Information (CSI) at the receiver. The exact Average Bit Error Probability (ABEP) over generically correlated and non–identically distributed Nakagami–m fading channels is computed in closed–form when Nt=2, while very accurate and asymptotically tight upper bounds are proposed to compute the ABEP when Nt>2. With respect to current literature, our contribution is threefold: i) the ABEP is computed in closed–form without resorting to Monte Carlo numerical simulations, which, besides being computationally intensive, only yield limited insights about the system performance and cannot be exploited for a systematic optimization of it, ii) the framework accounts for arbitrary fading conditions and is not restricted to identically distributed fading channels, thus offering a comprehensive under standing of the performance of SSK modulation over generalized fading channels, and iii) the analytical framework could be readily adapted to study the performance over generalized fading channels with arbitrary fading distributions, since the Nakagami–m distribution is a very flexible fading model, which either includes or can closely approximate several other fading models. Numerical results show that the performance of SSK modulation is significantly affected by the characteristics of fading channels, e.g., channel correlation, fading severity, and power imbalance among the Nt transmit–receive wireless links. Analytical frameworks and theoretical findings are also substantiated via Monte Carlo simulations

    PAPR Constrained Power Allocation for Iterative Frequency Domain Multiuser SIMO Detector

    Get PDF
    Peak to average power ratio (PAPR) constrained power allocation in single carrier multiuser (MU) single-input multiple-output (SIMO) systems with iterative frequency domain (FD) soft cancelation (SC) minimum mean squared error (MMSE) equalization is considered in this paper. To obtain full benefit of the iterative receiver, its convergence properties need to be taken into account also at the transmitter side. In this paper, we extend the existing results on the area of convergence constrained power allocation (CCPA) to consider the instantaneous PAPR at the transmit antenna of each user. In other words, we will introduce a constraint that PAPR cannot exceed a predetermined threshold. By adding the aforementioned constraint into the CCPA optimization framework, the power efficiency of a power amplifier (PA) can be significantly enhanced by enabling it to operate on its linear operation range. Hence, PAPR constraint is especially beneficial for power limited cell-edge users. In this paper, we will derive the instantaneous PAPR constraint as a function of transmit power allocation. Furthermore, successive convex approximation is derived for the PAPR constrained problem. Numerical results show that the proposed method can achieve the objectives described above.Comment: Presented in IEEE International Conference on Communications (ICC) 201

    Detect-and-forward relaying aided cooperative spatial modulation for wireless networks

    No full text
    A novel detect-and-forward (DeF) relaying aided cooperative SM scheme is proposed, which is capable of striking a flexible tradeoff in terms of the achievable bit error ratio (BER), complexity and unequal error protection (UEP). More specifically, SM is invoked at the source node (SN) and the information bit stream is divided into two different sets: the antenna index-bits (AI-bits) as well as the amplitude and phase modulation-bits (APM-bits). By exploiting the different importance of the AI-bits and the APM-bits in SM detection, we propose three low-complexity, yet powerful relay protocols, namely the partial, the hybrid and the hierarchical modulation (HM) based DeF relaying schemes. These schemes determine the most appropriate number of bits to be re-modulated by carefully considering their potential benefits and then assigning a specific modulation scheme for relaying the message. As a further benefit, the employment of multiple radio frequency (RF) chains and the requirement of tight inter-relay synchronization (IRS) can be avoided. Moreover, by exploiting the benefits of our low-complexity relaying protocols and our inter-element interference (IEI) model, a low-complexity maximum-likelihood (ML) detector is proposed for jointly detecting the signal received both via the source-destination (SD) and relay-destination (RD) links. Additionally, an upper bound of the BER is derived for our DeF-SM scheme. Our numerical results show that the bound is asymptotically tight in the high-SNR region and the proposed schemes provide beneficial system performance improvements compared to the conventional MIMO schemes in an identical cooperative scenario.<br/

    Spatial Modulation for Multiple-Antenna Wireless Systems : A Survey

    No full text
    International audienceMultiple-antenna techniques constitute a key technology for modern wireless communications, which trade-off superior error performance and higher data rates for increased system complexity and cost. Among the many transmission principles that exploit multiple-antenna at either the transmitter, the receiver, or both, Spatial Modulation (SM) is a novel and recently proposed multiple- uniqueness and randomness properties of the wireless channel for communication. This is achieved by adopting a simple but effective coding mechanism that establishes a one-to-one mapping between blocks of information bits to be transmitted and the spatial positions of the transmit-antenna in the antenna-array. In this article, we summarize the latest research achievements and outline some relevant open research issues of this recently proposed transmission technique
    corecore